Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells and regeneration: Opening up a new can of worms

03.05.2005


Although they may look small and unassuming, planarian worms are famous in the scientific world for their extraordinary ability to regenerate body parts after injury. Even a small piece cut off a planarian can reorganize and regenerate to form a whole new worm. Now, scientists have completed the first systematic investigation of gene function in planarians, opening the door to using genetic analysis to decipher how regeneration works in this enigmatic animal. The research, published in the May issue of Developmental Cell, provides new insight into how individual genes control regeneration and may provide relevant information that further enhances the understanding of human development and health.


Credit: Peter Reddien and Alejandro Sánchez Alvarado



Planarian regeneration depends on a population of adult stem cells called neoblasts that have the potential to turn into any type of planarian cell. Although planarians and humans are not closely related, many of the genes found in planarians are also present in humans. Understanding what regulates regeneration and neoblasts in planarians may provide information about how stem cells may be used to replace diseased or damaged tissues in humans.

Dr. Alejandro Sánchez Alvarado and colleagues from the University of Utah School of Medicine, in particular postdoctoral fellow Dr. Peter W. Reddien, used RNA interference (RNAi) to identify specific genes required for regeneration and stem cell function in planarians. RNAi interferes with the process of protein synthesis by interrupting the transfer of protein-producing instructions contained in genes to the site in the cell where the protein is actually made. The gene is essentially silenced because, without delivery of the proper instructions, the protein it codes for never gets produced.


The researchers evaluated the physical defects that arose after inhibition of specific genes with RNAi in intact animals and on the proliferation of neoblasts in animals with amputations. As a result of these studies, candidate regulators of stem cells and directors of sequential steps of regeneration were identified along with genes that appeared to be critical for normal physiological processes.

"Our study demonstrates the great potential of RNAi for the systematic exploration of gene function in understudied organisms and establishes planarians as a powerful model for the molecular genetic study of stem cells, regeneration, and tissue homeostasis," says Dr. Sánchez Alvarado. "Further characterizations of the genes and phenotypes identified in this study will help refine how individual genes within phenotype categories function to regulate regeneration."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.developmentalcell.com/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>