Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clustering of Hox genes, involved in the determination of body segments, is not necessary for their proper function

02.05.2005


The Hox genes (also known as homeotic genes) play a crucial role in the development of animals, being involved in the determination of segment identity along the body axis. These genes were discovered in the fruit fly Drosophila melanogaster 90 years ago and have been found later in all animals, including humans. The Hox genes are arranged in the fly genome in a striking manner: they are clustered and their order is the same as that of the body segments they act upon. This organization is conserved in the genome of most animals where the Hox genes are arranged in a similar way as in the fly genome. Its conservation during hundreds of millions of years suggested that this organization must have an important effect on the function of Hox genes, although the cause of their clustering is still controversial.



A research group of the Department of Genetics and Microbiology of the Universitat Autònoma de Barcelona (Spain), led by Professor Alfredo Ruiz, with the colaboration of the Molecular Biology Center Severo Ochoa (Madrid, Spain), The University of Cambridge (UK), and the Children’s Hospital Oakland Research Institute (USA) has found that the Hox gene complex has been rearranged differently in several Drosophila species. The function of Hox genes seems to be conserved despite the rearrangements. Thus Hox gene clustering in the Drosophila genome seems to be the result of evolutionary history more than that of functional necessity. The research will appear in this week’s issue of the scientific journal Genome Research.

The scientists analyzed the genome region where the Hox genes are located in three Drosophila species, D. buzzatii, D. melanogaster and D. pseudobscura. These species possess differents organizations of the Hox gene complex as a result of the splits of the original complex present in the ancestor during the last 60 millions years. They also observed that the dispersion of Hox genes does not affect their expression and consequently their function. Therefore, at least in the fruit fly, the clustering of Hox genes is not necessary for their proper function.


The fruit fly Drosophila is not the only exception to the rule of ordered arrangement of Hox genes. Some worms and marine invertebrates also show breakages of the Hox gene complex. What do these organisms have in common with the fruit fly? The scientists point that in the embryo development of all these organisms, the Hox genes are not activated in a temporal succession, as it occurs in most animals, for instance humans. Rather, the Hox genes are activated more or less simultaneously according to a very fast embryo development. The simoultaneous expression of Hox genes appear to make their clustering at a single genome site unnecessary. Therefore the Hox gene complex in these animals is disintegrating.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>