Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clustering of Hox genes, involved in the determination of body segments, is not necessary for their proper function

02.05.2005


The Hox genes (also known as homeotic genes) play a crucial role in the development of animals, being involved in the determination of segment identity along the body axis. These genes were discovered in the fruit fly Drosophila melanogaster 90 years ago and have been found later in all animals, including humans. The Hox genes are arranged in the fly genome in a striking manner: they are clustered and their order is the same as that of the body segments they act upon. This organization is conserved in the genome of most animals where the Hox genes are arranged in a similar way as in the fly genome. Its conservation during hundreds of millions of years suggested that this organization must have an important effect on the function of Hox genes, although the cause of their clustering is still controversial.



A research group of the Department of Genetics and Microbiology of the Universitat Autònoma de Barcelona (Spain), led by Professor Alfredo Ruiz, with the colaboration of the Molecular Biology Center Severo Ochoa (Madrid, Spain), The University of Cambridge (UK), and the Children’s Hospital Oakland Research Institute (USA) has found that the Hox gene complex has been rearranged differently in several Drosophila species. The function of Hox genes seems to be conserved despite the rearrangements. Thus Hox gene clustering in the Drosophila genome seems to be the result of evolutionary history more than that of functional necessity. The research will appear in this week’s issue of the scientific journal Genome Research.

The scientists analyzed the genome region where the Hox genes are located in three Drosophila species, D. buzzatii, D. melanogaster and D. pseudobscura. These species possess differents organizations of the Hox gene complex as a result of the splits of the original complex present in the ancestor during the last 60 millions years. They also observed that the dispersion of Hox genes does not affect their expression and consequently their function. Therefore, at least in the fruit fly, the clustering of Hox genes is not necessary for their proper function.


The fruit fly Drosophila is not the only exception to the rule of ordered arrangement of Hox genes. Some worms and marine invertebrates also show breakages of the Hox gene complex. What do these organisms have in common with the fruit fly? The scientists point that in the embryo development of all these organisms, the Hox genes are not activated in a temporal succession, as it occurs in most animals, for instance humans. Rather, the Hox genes are activated more or less simultaneously according to a very fast embryo development. The simoultaneous expression of Hox genes appear to make their clustering at a single genome site unnecessary. Therefore the Hox gene complex in these animals is disintegrating.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>