Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking COX-1 slows tumor growth in mice

02.05.2005


Blocking the COX-1 enzyme – not COX-2 – might lead to a way to prevent and treat the most common and fatal form of ovarian cancer, researchers at Vanderbilt University Medical Center reported this week.



The finding, that COX-1 inhibition slowed the growth of epithelial ovarian tumors in a mouse model of the disease, is surprising, said Sudhansu K. Dey, Ph.D., senior author of the paper and director of the Division of Reproductive and Developmental Biology in the Vanderbilt Department of Pediatrics.

Previous studies have linked high levels of another cyclooxygenase enzyme, COX-2, to colorectal and other cancers. "But this is the exception," said Dey, also professor of Cell & Developmental Biology and Pharmacology.


"These results establish the foundation for further studies and clinical trials using the novel approach of targeting COX-1 for the prevention and treatment of ovarian cancer," the researchers concluded.

Dey said further studies should be conducted to determine whether aspirin and other non-steroidal anti-inflammatory drugs, which block both COX enzymes, might improve treatment of epithelial ovarian cancer.

The study, posted Sunday on the Web site of the journal Cancer Research, was led by Takiko Daikoku, Ph.D., research assistant professor of Pediatrics at Vanderbilt.

According to the American Cancer Society, more than 22,000 women in the United States will be diagnosed with ovarian cancer this year, and more than 16,000 will die from the disease. Ovarian cancer is the fourth leading cause of cancer death in American women after lung, breast and colorectal cancer.

Eighty-five percent of human ovarian tumors arise from the epithelium or surface layer of tissue that surrounds the ovaries. While the incidence of ovarian cancer has declined recently, the death rate has not, in part because it is difficult to diagnose the disease in the early stages.

Several previous studies have reported high COX-2 levels in ovarian tumors. Most of these, however, used antibodies to detect COX-2 expression. "We now know that many of the commercially available antibodies cross react with both COX-1 and COX-2," Dey said.

The Vanderbilt researchers used multiple techniques, and in 2003 reported that COX-1 was over-expressed and promoted the growth of blood vessels in human epithelial ovarian tumors.

A year earlier, Sandra Orsulic, Ph.D., and her colleagues at the Memorial Sloan-Kettering Cancer Center in New York reported that they were able to induce ovarian cancer in a mouse model by using a virus to deliver two cancer-causing genes into ovarian surface epithelial cells that lacked a tumor suppressor gene.

In the current study, the Vanderbilt researchers used Orsulic’s model to test whether celecoxib (Celebrex), a selective COX-2 inhibitor, and SC-560, an experimental drug that selectively blocks COX-1, slowed tumor growth when these cells were transplanted into mice.

They found that while Celebrex had little effect, the COX-1 blocker dramatically reduced tumor growth. The drug also blocked production by COX-1 of prostacyclin, a member of a family of potent, hormone-like substances called prostaglandins that play a role in a wide variety of physiological functions including pain, inflammation and, presumably, cancer.

Whereas prostacyclin is the predominant prostaglandin found in mouse ovarian tumors, another prostaglandin, PGE2, seems to be generated in higher quantities in human ovarian cancers. This suggests that it’s not the particular enzyme – COX-1 or COX-2 – but downstream factors, including prostaglandins, that initiate tumor growth, Dey said.

Last fall, for example, the Vanderbilt researchers reported that silencing a cellular receptor called PPARä interfered with the ability of PGE2 to promote pre-cancerous colon polyps in mice.

Other researchers who contributed to the ovarian cancer study were Dingzhi Wang, Ph.D., research associate professor of Medicine; Susanne Tranguch, graduate student in Cell Biology; Jason D. Morrow, M.D., director of Clinical Pharmacology; Orsulic, now at Massachusetts General Hospital; and Raymond N. DuBois, M.D., Ph.D., director of the Vanderbilt-Ingram Cancer Center.

Clinton Colmenares | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>