Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal cell division explained

28.04.2005


Why do some cancer cells divide not into two, as cells are supposed to do in mitosis, but into three-four new cells that look thoroughly abnormal? This question was raised as early as the 1890s by the German tumor researcher David Hansemann, who could observe the strange mitosis even using the microscopes of his day. Now another David, Lund University researcher David Gisselsson, has found an answer.



Together with associates from the Section for Clinical Genetics, David Gisselsson has long been studying chromosome changes in various sorts of cancer cells. Contrary to the earlier belief that tumor cells are rather stable genetically, a few years ago he was able to show that genetic chaos prevails in certain severe cancer forms.

"The normal number of chromosomes in a human cell is 46. But in tumors from skeletal and pancreatic cancer, some cells can have far fewer than 46 chromosomes while others have several hundred. The structure of these chromosomes is also often abnormal-­for example, they have lost some parts, traded segments with each other, and copied certain genes in mass production," says David Gisselsson.


The Lund scientists have scrutinized these phenomena in a series of studies. They have been able to demonstrate that certain tumor cells get stuck in mitosis, so that their chromosomes do not divide neatly in two directions, but rather get pulled apart in a disorganized manner into the daughter cells. This is because the ends of the chromosomes, the so-called telomers, have lost their protective exteriors.

Cells with truncated, unprotected telomers from different chromosomes actually ought to simply die, but this does not happen in these tumor cells. Instead, the naked telomers cling to each other. This can be the explanation for the abnormal number of chromosomes in some tumor cells, where certain ones have incorporated a number of extra chromosomes while others wind up with too few.

Having the wrong number of chromosomes does not lead directly to death in these tumor cells. On the other hand, they have problems with mitosis.

"We have observed that these cells sometimes try to divide, but they fail and go into an idle state. If they then try again, they tend to divide in three or four directions. This explains Hansemann’s discovery from the 1890s!" says David Gisselsson.

In its latest study the Lund team has also shown that the daughter cells of those cells which divide in more than two directions have a completely random distribution of chromosomes. This genetic chaos is so great that the cells usually die.

Research groups in several countries have been studying von Hansemann mitosis at the molecular level, that is, what happens inside the cell. But this work has proven to have little relevance to the struggle against cancer. These are not the cells that make a tumor grow, since they themselves typically die off.

On the other hand, the Lund team now wishes to study substances that might be able to counteract cancer by further damaging already truncated telomers. In that way it may be possible to increase the genetic chaos in tumor cells in order to get more of them to simply die.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>