Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal cell division explained

28.04.2005


Why do some cancer cells divide not into two, as cells are supposed to do in mitosis, but into three-four new cells that look thoroughly abnormal? This question was raised as early as the 1890s by the German tumor researcher David Hansemann, who could observe the strange mitosis even using the microscopes of his day. Now another David, Lund University researcher David Gisselsson, has found an answer.



Together with associates from the Section for Clinical Genetics, David Gisselsson has long been studying chromosome changes in various sorts of cancer cells. Contrary to the earlier belief that tumor cells are rather stable genetically, a few years ago he was able to show that genetic chaos prevails in certain severe cancer forms.

"The normal number of chromosomes in a human cell is 46. But in tumors from skeletal and pancreatic cancer, some cells can have far fewer than 46 chromosomes while others have several hundred. The structure of these chromosomes is also often abnormal-­for example, they have lost some parts, traded segments with each other, and copied certain genes in mass production," says David Gisselsson.


The Lund scientists have scrutinized these phenomena in a series of studies. They have been able to demonstrate that certain tumor cells get stuck in mitosis, so that their chromosomes do not divide neatly in two directions, but rather get pulled apart in a disorganized manner into the daughter cells. This is because the ends of the chromosomes, the so-called telomers, have lost their protective exteriors.

Cells with truncated, unprotected telomers from different chromosomes actually ought to simply die, but this does not happen in these tumor cells. Instead, the naked telomers cling to each other. This can be the explanation for the abnormal number of chromosomes in some tumor cells, where certain ones have incorporated a number of extra chromosomes while others wind up with too few.

Having the wrong number of chromosomes does not lead directly to death in these tumor cells. On the other hand, they have problems with mitosis.

"We have observed that these cells sometimes try to divide, but they fail and go into an idle state. If they then try again, they tend to divide in three or four directions. This explains Hansemann’s discovery from the 1890s!" says David Gisselsson.

In its latest study the Lund team has also shown that the daughter cells of those cells which divide in more than two directions have a completely random distribution of chromosomes. This genetic chaos is so great that the cells usually die.

Research groups in several countries have been studying von Hansemann mitosis at the molecular level, that is, what happens inside the cell. But this work has proven to have little relevance to the struggle against cancer. These are not the cells that make a tumor grow, since they themselves typically die off.

On the other hand, the Lund team now wishes to study substances that might be able to counteract cancer by further damaging already truncated telomers. In that way it may be possible to increase the genetic chaos in tumor cells in order to get more of them to simply die.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>