Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal cell division explained

28.04.2005


Why do some cancer cells divide not into two, as cells are supposed to do in mitosis, but into three-four new cells that look thoroughly abnormal? This question was raised as early as the 1890s by the German tumor researcher David Hansemann, who could observe the strange mitosis even using the microscopes of his day. Now another David, Lund University researcher David Gisselsson, has found an answer.



Together with associates from the Section for Clinical Genetics, David Gisselsson has long been studying chromosome changes in various sorts of cancer cells. Contrary to the earlier belief that tumor cells are rather stable genetically, a few years ago he was able to show that genetic chaos prevails in certain severe cancer forms.

"The normal number of chromosomes in a human cell is 46. But in tumors from skeletal and pancreatic cancer, some cells can have far fewer than 46 chromosomes while others have several hundred. The structure of these chromosomes is also often abnormal-­for example, they have lost some parts, traded segments with each other, and copied certain genes in mass production," says David Gisselsson.


The Lund scientists have scrutinized these phenomena in a series of studies. They have been able to demonstrate that certain tumor cells get stuck in mitosis, so that their chromosomes do not divide neatly in two directions, but rather get pulled apart in a disorganized manner into the daughter cells. This is because the ends of the chromosomes, the so-called telomers, have lost their protective exteriors.

Cells with truncated, unprotected telomers from different chromosomes actually ought to simply die, but this does not happen in these tumor cells. Instead, the naked telomers cling to each other. This can be the explanation for the abnormal number of chromosomes in some tumor cells, where certain ones have incorporated a number of extra chromosomes while others wind up with too few.

Having the wrong number of chromosomes does not lead directly to death in these tumor cells. On the other hand, they have problems with mitosis.

"We have observed that these cells sometimes try to divide, but they fail and go into an idle state. If they then try again, they tend to divide in three or four directions. This explains Hansemann’s discovery from the 1890s!" says David Gisselsson.

In its latest study the Lund team has also shown that the daughter cells of those cells which divide in more than two directions have a completely random distribution of chromosomes. This genetic chaos is so great that the cells usually die.

Research groups in several countries have been studying von Hansemann mitosis at the molecular level, that is, what happens inside the cell. But this work has proven to have little relevance to the struggle against cancer. These are not the cells that make a tumor grow, since they themselves typically die off.

On the other hand, the Lund team now wishes to study substances that might be able to counteract cancer by further damaging already truncated telomers. In that way it may be possible to increase the genetic chaos in tumor cells in order to get more of them to simply die.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>