Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin researchers identify sleep gene

28.04.2005


Zeroing in on the core cellular mechanisms of sleep, researchers at University of Wisconsin Medical School have identified for the first time a single gene mutation that has a powerful effect on the amount of time fruit flies sleep.

In its normal state, the Drosophila (fruit fly) gene, called Shaker, produces an ion channel that controls the flow of potassium into cells, a process that critically affects, among other things, electrical activity in neurons. A handful of recent studies suggest that potassium channels are also involved in the generation of sleep in humans.

Reported in the April 28 issue of Nature, the finding points to novel approaches to treating sleep irregularities in humans-from promoting restorative sleep to prolonging wakefulness.



"This research offers the possibility of developing a new class of compounds that could affect potassium channels in the brain rather than other brain chemical systems targeted currently," says lead author Dr. Chiara Cirelli, assistant professor of psychiatry at UW Medical School.

UW-Madison genetics professor Barry Ganetsky, likely the world expert on the Shaker gene, was a collaborator on the study. Dr. Giulio Tononi, UW Medical School professor of psychiatry, was the senior author on the paper.

Most people sleep seven to eight hours a night, and if they are deprived of sleep, their cognitive performance suffers greatly. However, a few people do well with just three or four hours of sleep-a trait that seems to run in families.

"We wanted to determine which genes underlie this phenomenon in order to shed light on the mechanisms and functions of sleep," Tononi says.

The Wisconsin study focuses on factors that control sleep duration as opposed to the timing of when sleep occurs, which is regulated by the circadian system, Tononi notes. "The key molecular mechanisms controlling the circadian timing of sleep are well understood, but details about the homeostatic mechanism that regulates the amount of sleep have been unclear," he says.

In a four-year, round-the-clock search, researchers screened 9,000 mutated fruit flies, many of them supplied by Ganetsky’s lab, and found one line of them that slept one-third the amount of normal flies. Put through a series of tests, the short-sleeping flies, named minisleep (mns), were found to perform normally and did not appear to be impaired by sleep deprivation. The mns flies, however, did have shorter life spans.

Following the testing, the researchers noticed shaking in the flies’ legs as the insects recovered from anesthesia. The observation led the team to focus on the Shaker gene, which produces this effect. Nevertheless, Shaker’s main job in flies-and in its equivalent in humans--is to control the excitability of cell membranes.

Genetic analysis of the mns flies, conducted by Daniel Bushey, a post-doctoral fellow working with the Tononi team, revealed that their Shaker genes contained a single amino-acid mutation. Because of the mutation, a functional ion channel could not be formed on the cell membrane and potassium therefore could not flow through it.

When the researchers first tested flies with the Shaker gene, they found that some of them with other mutations were normal sleepers. But these flies became short sleepers when the researchers removed genetic modifiers from their genome.

"This told us that genetic forces push hard against this phenotype to make it ineffective," Cirelli says. "Being a short sleeper is probably not a good thing. We know that the mns mutation affects mortality, but we’re not sure how."

In earlier studies, Tononi’s team discovered that fruit flies do, in fact, sleep.

"The more behaviors we look at, in terms of sleep, the more we find that sleep in fruit flies is very, very similar to sleep in mammals," Cirelli says.

Like humans, fruit flies generally are quiet and immobile for between six and 12 hours each night and lose most of their ability to respond to stimuli, the researchers found. When deprived of sleep, humans and their winged counterparts rebound on the following night by sleeping longer and more deeply. Flies also sleep more in their youth than later in life, when their sleep is fragmented, as with humans.

In other studies, the scientists also observed that caffeine has the same stimulating effects on human and fly sleep, and that similar genes are expressed in both species when they are awake and asleep. Tononi’s team also conducted EEGs on the flies and found evidence of the same electrophysiological changes occurring during sleep and wakefulness as in humans.

"The electrical changes in humans look different that they do in flies because our brains are organized differently," Cirelli says. "But the EEGs showed electrophysiological changes signifying that the flies were asleep and awake."

In mammals the changes produce hallmark waves, or oscillations of groups of neurons, easily detected by EEG. The waves are slower during deep sleep and faster during waking times. One way of getting from the faster to the slower state is by opening ion channels, allowing potassium to flow through them.

"Our hypothesis is that if you don’t have potassium channels, you won’t get slow waves," Cirelli says. "The cell membrane will remain activated, preventing long periods of deep, non-REM sleep."

The researchers say that the fly research translates to humans even more than they thought it would. "Humans have the same kind of genes and potassium channels. And we know that slow waves must be generated by changes in the excitability of neuron cell membranes," Cirelli says.

"Potassium changes may have a huge affect on sleep in humans."

Sleep is a highly complex activity and probably involves many genes, some of which are more influential than others, says Cirelli. "We believe this gene is very powerful because it acts on the final common pathway and has the ability to change the excitability of neurons."

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>