Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programmable cells: Engineer turns bacteria into living computers

28.04.2005


In a step toward making living cells function as if they were tiny computers, engineers at Princeton have programmed bacteria to communicate with each other and produce color-coded patterns.



The feat, accomplished in a biology lab within the Department of Electrical Engineering, represents an important proof-of-principle in an emerging field known as "synthetic biology," which aims to harness living cells as workhorses that detect hazards, build structures or repair tissues and organs within the body.

"We are really moving beyond the ability to program individual cells to programming a large collection -- millions or billions -- of cells to do interesting things," said Ron Weiss, an assistant professor of electrical engineering and molecular biology.


Collaborating with researchers at the California Institute of Technology, Weiss and graduate student Subhayu Basu programmed E. coli bacteria to emit red or green fluorescent light in response to a signal emitted from another set of E. coli. In one experiment, the cells glowed green when they sensed a higher concentration of the signal chemical and red when they sensed a lower concentration. In a Petri dish, they formed a bull’s-eye pattern -- a green circle inside a red one -- surrounding the sender cells.

In addition to demonstrating that the genetic programming techniques work, this sensing system could be useful for the detection of chemicals or organisms in laboratory tests. "The bull’s-eye could tell you: This is where the anthrax is," said Weiss.

The researchers published their results in the April 28 issue of Nature. In addition to Weiss and Basu, authors of the paper are postdoctoral researcher Yoram Gerchman at Princeton and professor of chemical engineering Frances Arnold and graduate student Cynthia Collins at Caltech. It was funded by a grant from the U.S. Defense Advanced Research Projects Agency.

In previous work, including a paper published March 8 in the Proceedings of the National Academy of Sciences along with Sara Hooshangi and Stephan Thiberge, Weiss showed the feasibility of inserting engineered pieces of DNA into cells to make them behave in the same manner as digital circuits. The cells, for example, could be made to perform basic mathematical logic and produce crisp, reliable readouts that are more commonly associated with silicon chips than biological organisms. The new paper applies similar techniques to a large population of cells.

"Here we’re showing an integrated package where the cells have an ability to send messages and other cells have the ability to act on these messages," said Weiss.

The creation of patterns, such as the bull’s-eye effect, is a key step in one of Weiss’ eventual goals, which is to have the cells secrete materials that build physical devices such as antennas or transmitters in places that are hard for humans to reach. Programmed cells also could be used to control the repair or construction of tissues within the body, possibly guiding stem cells to the locations where they are needed for the growth of new nerve or bone cells in a process Weiss called "programmed tissue engineering."

Even the early step of creating patterns in a Petri dish, however, may be useful as a tool for other scientists, particularly developmental biologists who are trying to understand how the cells of an embryo arrange themselves into patterns that become the various body parts of a mature organism. In fruit fly embryos, for example, the first cells are thought to differentiate into the head, abdomen and other parts based on the concentration of chemical signals that are emitted from the ends of the embryo.

In addition to conducting laboratory experiments, Weiss and colleagues are creating computer models of their engineered systems, which allow them to study how small modifications would affect the ultimate behavior of the organisms. So far, said Weiss, the experimental results have matched the computer models fairly closely, but the goal is to have a mathematically exact description of how each component works.

"One of the nice things about synthetic biology is that because we built the network from scratch, we should be able to model all the important details," he said. At some point in the future, he said, scientists will be able to choose a behavior they want from cells, and a computer program will create a genetic circuit to accomplish the task. "Then we can do an experiment to see if the community of cells is behaving as we desire. That is going to have a tremendous number of applications."

Eric Quinones | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>