Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral protein influences key cell-signaling pathway

27.04.2005


New research shows that a protein produced by a cancer-causing virus influences a key signaling pathway in the immune cells that the virus infects. This stimulates the cells to divide, helping the virus spread through the body.



The study, led by researchers at Ohio State University, examined the human T lymphotropic virus type 1 (HTLV-1) and a protein that it produces called p12. The research is published in the April issue of the journal AIDS Research and Human Retroviruses.

The study found that p12 increases the activity of an important gene in host cells. That gene controls production of a cell protein called p300. The p300 protein, in turn, controls a variety of other genes in many types of cells, including T lymphocytes, the cells that HTLV-1 infects.


The findings might help scientists better understand how HTLV-1 maintains its lifelong infection and how the normal immune cells that “remember” a vaccination or an infection can survive for years or even decades.

“The p300 protein is an important central regulator of gene activity in lymphocytes and many other kinds of cells,” says Michael Lairmore, professor and chair of veterinary biosciences and a member of the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. “We were surprised to see p300 show-up among the many genes affected by this viral protein.”

HTLV-1 infects an estimated 15 to 20 million people worldwide. In about five percent of them, the infection will lead to adult T cell leukemia or lymphoma (ATLL). ATLL is an aggressive disease characterized by a long latent period and the proliferation of T lymphocytes. The virus is spread by sexual activity, by contact with infected blood and by infected women to children through breast milk.

HTLV-1, like its cousin HIV, inserts its genetic information permanently into the DNA of a T lymphocyte and remains there for the life of the cell. HTLV-1 infection is also lifelong. A hallmark of HTLV-1 infection is the proliferation of T lymphocytes.

This sets HTLV-1 apart from HIV, Lairmore says. “Unlike HIV, which kills cells and destroys the immune system, HTLV-1 enhances the survival of T cells.”

But scientists don’t understand how it prolongs T-cell survival and causes their proliferation.

This study’s findings offer some clues. It is the latest in a series of studies led by Lairmore that examine how HTLV-1 affects T lymphocytes and causes cancer.

The p12 gene is called an “accessory gene” because the protein encoded by the gene seemed unnecessary since the virus could still reproduce, or replicate, in cells grown in the laboratory even when p12 was missing.

“But viruses do not keep genes unless they have a purpose,” Lairmore says. In an earlier study, Lairmore and his colleagues tried to infect an animal model with an HTLV-1 that lacked the p12 gene, and it stopped the virus from replicating almost entirely.

“That told us this gene was important,” he says.

Subsequent research led by Lairmore showed that the p12 protein travels to the network of membranes within the cell known as the rough endoplasmic reticulum (RER). Among other things, the RER helps regulate the amount of calcium in the cell. The investigators found that the p12 protein allows calcium to leak out of the RER, thereby causing calcium levels to rise elsewhere in the cell.

“Calcium is exquisitely regulated in cells,” Lairmore says. “When p12 affects that balance, it affects the activity of a variety of genes.”

The current study used a non-infectious form of HIV to transplant the HTLV-1 p12 gene into laboratory-grown T cells. The infected cells then produced a constant level of p12 protein. The researchers then used gene microarray technology to identify which cellular genes out of 33,000 become either more or less active due to the p12 protein.

The researchers found that p12 altered the activity of a variety of genes linked to chemical pathways that control cell signaling, proliferation and death. The p300 gene stood out as one showing increased activity.

Taken overall, the findings suggest that HTLV-1 p12 protein influences the genetic activity of infected T cells to stimulate their proliferation and promote efficient viral infection.

Funding from National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>