Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral protein influences key cell-signaling pathway

27.04.2005


New research shows that a protein produced by a cancer-causing virus influences a key signaling pathway in the immune cells that the virus infects. This stimulates the cells to divide, helping the virus spread through the body.



The study, led by researchers at Ohio State University, examined the human T lymphotropic virus type 1 (HTLV-1) and a protein that it produces called p12. The research is published in the April issue of the journal AIDS Research and Human Retroviruses.

The study found that p12 increases the activity of an important gene in host cells. That gene controls production of a cell protein called p300. The p300 protein, in turn, controls a variety of other genes in many types of cells, including T lymphocytes, the cells that HTLV-1 infects.


The findings might help scientists better understand how HTLV-1 maintains its lifelong infection and how the normal immune cells that “remember” a vaccination or an infection can survive for years or even decades.

“The p300 protein is an important central regulator of gene activity in lymphocytes and many other kinds of cells,” says Michael Lairmore, professor and chair of veterinary biosciences and a member of the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. “We were surprised to see p300 show-up among the many genes affected by this viral protein.”

HTLV-1 infects an estimated 15 to 20 million people worldwide. In about five percent of them, the infection will lead to adult T cell leukemia or lymphoma (ATLL). ATLL is an aggressive disease characterized by a long latent period and the proliferation of T lymphocytes. The virus is spread by sexual activity, by contact with infected blood and by infected women to children through breast milk.

HTLV-1, like its cousin HIV, inserts its genetic information permanently into the DNA of a T lymphocyte and remains there for the life of the cell. HTLV-1 infection is also lifelong. A hallmark of HTLV-1 infection is the proliferation of T lymphocytes.

This sets HTLV-1 apart from HIV, Lairmore says. “Unlike HIV, which kills cells and destroys the immune system, HTLV-1 enhances the survival of T cells.”

But scientists don’t understand how it prolongs T-cell survival and causes their proliferation.

This study’s findings offer some clues. It is the latest in a series of studies led by Lairmore that examine how HTLV-1 affects T lymphocytes and causes cancer.

The p12 gene is called an “accessory gene” because the protein encoded by the gene seemed unnecessary since the virus could still reproduce, or replicate, in cells grown in the laboratory even when p12 was missing.

“But viruses do not keep genes unless they have a purpose,” Lairmore says. In an earlier study, Lairmore and his colleagues tried to infect an animal model with an HTLV-1 that lacked the p12 gene, and it stopped the virus from replicating almost entirely.

“That told us this gene was important,” he says.

Subsequent research led by Lairmore showed that the p12 protein travels to the network of membranes within the cell known as the rough endoplasmic reticulum (RER). Among other things, the RER helps regulate the amount of calcium in the cell. The investigators found that the p12 protein allows calcium to leak out of the RER, thereby causing calcium levels to rise elsewhere in the cell.

“Calcium is exquisitely regulated in cells,” Lairmore says. “When p12 affects that balance, it affects the activity of a variety of genes.”

The current study used a non-infectious form of HIV to transplant the HTLV-1 p12 gene into laboratory-grown T cells. The infected cells then produced a constant level of p12 protein. The researchers then used gene microarray technology to identify which cellular genes out of 33,000 become either more or less active due to the p12 protein.

The researchers found that p12 altered the activity of a variety of genes linked to chemical pathways that control cell signaling, proliferation and death. The p300 gene stood out as one showing increased activity.

Taken overall, the findings suggest that HTLV-1 p12 protein influences the genetic activity of infected T cells to stimulate their proliferation and promote efficient viral infection.

Funding from National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>