Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramides from sheeps wool similar to those of the human skin

27.04.2005


The high concentration of ceramides extracted by means of supercritical fluid technology has provoked great interest in the pharmaceutical and cosmetics industries. Due to their composition, these ceramides increase the hydration of the skin and accelerate the repair of damaged skin tissue.



A fluid in a supercritical state is one that has been subject to conditions above their critical pressure and temperature parameters and which have corresponding intermediate properties - between those of a liquid and of a gas, and with ideal solvent properties.

One of the most recent projects developed at GAIKER in relation to this theme is that of CEREX (Obtaining Wool Ceramides by means of Supercritical Fluids Extraction) using sheep’s wool.


This has provoked great interest in the pharmaceutical and cosmetics industries given that the ceramides currently used are prepared using synthetic and biotechnological methods, with concomitant very high costs. Moreover, ceramides obtained following these techniques do not possess the same chemical composition as those present in the skin.

Ceramides that repair skin tissue

The ceramides present in wool, however, are very similar in composition to those found on the corneal layer of human skin tissue. This, fundamentally proteinaceous, natural fibre has an external lipid content – known as lanolin - already used in cosmetics – and an internal lipid content of great value due to its high concentration of ceramides.

The process of extraction with supercritical CO2 developed at GAIKER enable high-yield extractions of wool ceramides, and the studies undertaken by IIQAB of the extracted lipids have show that the liposomic structures formed with them provide a reinforcement of the protective barrier function of the skin, increasing its hydration and accelerating its repair when the tissue has been chemically or physically damaged.

Although there are a number of supercritical fluids, the fluid most used at both research and industrial applications levels is undoubtedly CO2. This is because its critical conditions are relatively low (31ºC, 73 atm) and, therefore, easy to operate.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>