Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein crucial for survival of Lyme-disease bacterium

26.04.2005


When the tick-borne bacterium that causes Lyme disease lacks a specific protein that responds to an incoming meal of blood, it is unable to be transmitted from the tick to a new animal host, researchers at UT Southwestern Medical Center have found. The findings suggest that the protein, called BptA, is essential for the bacterium Borrelia burgdorfei (Bb) to survive in the gut of its tick host and may offer a potential new target for agents aimed at eradicating Lyme disease.



Results of the multisite study are currently online and will appear in an upcoming issue of the Proceedings of the National Academy of Sciences. The bacterium that causes Lyme disease lives in infected mammals and in the midgut of ticks. When an infected tick bites an animal or a human, the bacteria are transmitted to the new host. Infection causes fever, malaise, fatigue, headache, muscle and joint aches, and a characteristic "bull’s-eye" rash that surrounds the site of infection.

In the study, researchers genetically altered the Bb bacterium to make a "knockout" form that lacked a gene that codes for the protein BptA. Without the protein, bacteria were unable to utilize the blood on which the tick feeds when it bites a victim.


"As far as we can tell, Bb bacteria normally utilize blood as their main nutrient source, just as the tick does," said Dr. Michael Norgard, chairman of microbiology at UT Southwestern and senior author of the study. "When the tick is not feeding, and no nutrients are coming in, the bacteria are sort of in a quiescent state, waiting in the tick’s midgut, which is equivalent to our digestive system."

When blood enters the tick gut, Dr. Norgard said it appears that changes in temperature and acidity signal the bacteria that the nutrient is present, triggering the bacteria to replicate in large numbers and migrate to the tick’s salivary glands, where they are transmitted into animals or humans during the tick’s feeding process. The energy for replication is believed to come from the proteins and nutrients made available as the tick breaks down whole blood.

"For some reason, bacteria lacking the BptA protein either can’t utilize the blood meal in the way the wild-type bacteria do, or something about the blood becomes hostile to them," said Dr. Norgard, who holds the B.B. Owen Distinguished Chair in Molecular Research. "Instead of helping the bacteria, the blood harms them. Ultimately, as the tick feeds on blood and begins to go through its molting process, the levels of the knockout Bb bacteria in the tick drop by about 90 percent, which is a very dramatic decrease." In the study, each time infected ticks fed, bacteria levels within them dropped until they eventually were zero.

"We’re not sure whether the lack of the BptA protein ultimately kills the bacteria or inactivates them," Dr. Norgard said. "But certainly it prevents them from replicating in the manner that they should to sustain the numbers needed to move from the midgut to the salivary glands. We don’t understand the mechanism for that yet, and that will be the next step in our research."

Further study of the function of the BptA protein could give researchers additional clues as to how the organism has evolved to survive in ticks and why it has chosen a tick environment to be its natural vector in nature. "It potentially could give us a target for eradicating the bacterium, because if you understand what it needs to sustain itself, then in theory you could disrupt that cycle by blocking whatever that mechanism is," Dr. Norgard said.

Traditionally, scientists studying pathogens have looked at genes that affect how the infecting organisms behave once inside a human host. What tends to get ignored, Dr. Norgard said, is the other side of the coin. "This organism has to live half of its life cycle in a tick," he said. "There must be subsets of genes important to its survival there. If it can’t exist in ticks, it can’t maintain itself in nature and hence can’t infect animals or humans."

UT Southwestern molecular microbiology graduate student Andrew Revel, a lead author of the study, found the bptA gene by screening a number of candidate genes he thought might be affecting the survivability of Bb within its hosts. The research team had hypothesized that the elimination of the gene would somehow impact the pathogenesis of Lyme disease in mammals, but they found no evidence of that. Knockout bacteria not only survived within mice, but also produced Lyme disease in the animals.

"That’s when we began to look more in the tick," Dr. Norgard said. "It wasn’t until we went through the later stages of tick feeding – allowing the ticks to feed on mice, waiting a couple of months for the tick to molt, then refeeding them – that we began to see the effect. Our results required a much more comprehensive assessment of the total life cycle of the bacterium, as opposed to just focusing on the mammalian infection, which is what many scientists tend to do."

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>