Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein crucial for survival of Lyme-disease bacterium

26.04.2005


When the tick-borne bacterium that causes Lyme disease lacks a specific protein that responds to an incoming meal of blood, it is unable to be transmitted from the tick to a new animal host, researchers at UT Southwestern Medical Center have found. The findings suggest that the protein, called BptA, is essential for the bacterium Borrelia burgdorfei (Bb) to survive in the gut of its tick host and may offer a potential new target for agents aimed at eradicating Lyme disease.



Results of the multisite study are currently online and will appear in an upcoming issue of the Proceedings of the National Academy of Sciences. The bacterium that causes Lyme disease lives in infected mammals and in the midgut of ticks. When an infected tick bites an animal or a human, the bacteria are transmitted to the new host. Infection causes fever, malaise, fatigue, headache, muscle and joint aches, and a characteristic "bull’s-eye" rash that surrounds the site of infection.

In the study, researchers genetically altered the Bb bacterium to make a "knockout" form that lacked a gene that codes for the protein BptA. Without the protein, bacteria were unable to utilize the blood on which the tick feeds when it bites a victim.


"As far as we can tell, Bb bacteria normally utilize blood as their main nutrient source, just as the tick does," said Dr. Michael Norgard, chairman of microbiology at UT Southwestern and senior author of the study. "When the tick is not feeding, and no nutrients are coming in, the bacteria are sort of in a quiescent state, waiting in the tick’s midgut, which is equivalent to our digestive system."

When blood enters the tick gut, Dr. Norgard said it appears that changes in temperature and acidity signal the bacteria that the nutrient is present, triggering the bacteria to replicate in large numbers and migrate to the tick’s salivary glands, where they are transmitted into animals or humans during the tick’s feeding process. The energy for replication is believed to come from the proteins and nutrients made available as the tick breaks down whole blood.

"For some reason, bacteria lacking the BptA protein either can’t utilize the blood meal in the way the wild-type bacteria do, or something about the blood becomes hostile to them," said Dr. Norgard, who holds the B.B. Owen Distinguished Chair in Molecular Research. "Instead of helping the bacteria, the blood harms them. Ultimately, as the tick feeds on blood and begins to go through its molting process, the levels of the knockout Bb bacteria in the tick drop by about 90 percent, which is a very dramatic decrease." In the study, each time infected ticks fed, bacteria levels within them dropped until they eventually were zero.

"We’re not sure whether the lack of the BptA protein ultimately kills the bacteria or inactivates them," Dr. Norgard said. "But certainly it prevents them from replicating in the manner that they should to sustain the numbers needed to move from the midgut to the salivary glands. We don’t understand the mechanism for that yet, and that will be the next step in our research."

Further study of the function of the BptA protein could give researchers additional clues as to how the organism has evolved to survive in ticks and why it has chosen a tick environment to be its natural vector in nature. "It potentially could give us a target for eradicating the bacterium, because if you understand what it needs to sustain itself, then in theory you could disrupt that cycle by blocking whatever that mechanism is," Dr. Norgard said.

Traditionally, scientists studying pathogens have looked at genes that affect how the infecting organisms behave once inside a human host. What tends to get ignored, Dr. Norgard said, is the other side of the coin. "This organism has to live half of its life cycle in a tick," he said. "There must be subsets of genes important to its survival there. If it can’t exist in ticks, it can’t maintain itself in nature and hence can’t infect animals or humans."

UT Southwestern molecular microbiology graduate student Andrew Revel, a lead author of the study, found the bptA gene by screening a number of candidate genes he thought might be affecting the survivability of Bb within its hosts. The research team had hypothesized that the elimination of the gene would somehow impact the pathogenesis of Lyme disease in mammals, but they found no evidence of that. Knockout bacteria not only survived within mice, but also produced Lyme disease in the animals.

"That’s when we began to look more in the tick," Dr. Norgard said. "It wasn’t until we went through the later stages of tick feeding – allowing the ticks to feed on mice, waiting a couple of months for the tick to molt, then refeeding them – that we began to see the effect. Our results required a much more comprehensive assessment of the total life cycle of the bacterium, as opposed to just focusing on the mammalian infection, which is what many scientists tend to do."

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>