Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State professor takes chemistry to another world

26.04.2005


Astronaut health is one of NASA’s top priorities.



Once beyond Earth’s atmosphere, astronauts are exposed to ionizing radiation and microgravity. Effects from these, along with the potential buildup of toxins in the enclosed environment of a spaceship, put astronaut health at risk.

Kansas State University professor Chris Culbertson has been working with NASA to investigate how such hazardous conditions affect humans at the cellular level and how to lessen such conditions, thus allowing astronauts to work in a healthier environment.


Culbertson, an assistant professor of chemistry, is an expert in microfluidics, a branch of analytical chemistry that is focused on miniaturizing chemical analysis instrumentation. To demonstrate the capability of microfluidics, Culbertson uses a variety of devices for performing complex chemical analyses.

"Essentially, a microfluidic device is just a small piece of glass with channels etched in it," Culbertson said. "Those channels are smaller in diameter than that of a human hair. We can move chemicals through these channels to either separate them or we can use them to perform chemical reactions. Specifically for NASA, we are developing microfluidic devices which will allow us to automatically monitor the health of human cells on orbit."

In the past, astronauts have had to freeze cells and bring them back to earth for analysis. With Culbertson’s device, the astronauts can look at DNA mutation rates in cells and how they change over time on orbit. Because of its compact size, the device is ideal for shuttle missions. Culbertson said it is also cost efficient because it does not require much power to operate.

To test the microfluidic devices, Culbertson and Greg Roman, graduate student in chemistry, have taken several flights on NASA’s microgravity research aircraft.

"The ’vomit comet’ is essentially an aircraft that does a series of parabolic maneuvers," Culbertson said. "The airplane basically goes into a parabola about 45 degrees nose-up, and then it begins to decelerate. When the deceleration matches the gravitational force -- which pulls us to earth -- you get a simulated freefall in the aircraft cabin."

In the future, Culbertson plans to take several more flights in hopes of qualifying the microfluidic devices for a future space mission.

Culbertson said that NASA is also looking for ways of providing more opportunities for science by developing unmanned free-flyer rockets.

"The problem with free-flyers is oftentimes biological experiments have to be returned to earth in order to get the data from them," said Culbertson. "But we hope to use our microfluidic devices to acquire the necessary data remotely by integrating our chemical analysis instrumentation directly with the biological experiments and then sending the data back to earth using radio communication. Thus, scientists can do the analysis in space and NASA won’t have to design a reentry vehicle to bring the experiments back to earth . This will not only save a significant amount of money, but it will also make more room on the rocket to take experiments up in space."

Chris Culbertson | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>