Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State professor takes chemistry to another world

26.04.2005


Astronaut health is one of NASA’s top priorities.



Once beyond Earth’s atmosphere, astronauts are exposed to ionizing radiation and microgravity. Effects from these, along with the potential buildup of toxins in the enclosed environment of a spaceship, put astronaut health at risk.

Kansas State University professor Chris Culbertson has been working with NASA to investigate how such hazardous conditions affect humans at the cellular level and how to lessen such conditions, thus allowing astronauts to work in a healthier environment.


Culbertson, an assistant professor of chemistry, is an expert in microfluidics, a branch of analytical chemistry that is focused on miniaturizing chemical analysis instrumentation. To demonstrate the capability of microfluidics, Culbertson uses a variety of devices for performing complex chemical analyses.

"Essentially, a microfluidic device is just a small piece of glass with channels etched in it," Culbertson said. "Those channels are smaller in diameter than that of a human hair. We can move chemicals through these channels to either separate them or we can use them to perform chemical reactions. Specifically for NASA, we are developing microfluidic devices which will allow us to automatically monitor the health of human cells on orbit."

In the past, astronauts have had to freeze cells and bring them back to earth for analysis. With Culbertson’s device, the astronauts can look at DNA mutation rates in cells and how they change over time on orbit. Because of its compact size, the device is ideal for shuttle missions. Culbertson said it is also cost efficient because it does not require much power to operate.

To test the microfluidic devices, Culbertson and Greg Roman, graduate student in chemistry, have taken several flights on NASA’s microgravity research aircraft.

"The ’vomit comet’ is essentially an aircraft that does a series of parabolic maneuvers," Culbertson said. "The airplane basically goes into a parabola about 45 degrees nose-up, and then it begins to decelerate. When the deceleration matches the gravitational force -- which pulls us to earth -- you get a simulated freefall in the aircraft cabin."

In the future, Culbertson plans to take several more flights in hopes of qualifying the microfluidic devices for a future space mission.

Culbertson said that NASA is also looking for ways of providing more opportunities for science by developing unmanned free-flyer rockets.

"The problem with free-flyers is oftentimes biological experiments have to be returned to earth in order to get the data from them," said Culbertson. "But we hope to use our microfluidic devices to acquire the necessary data remotely by integrating our chemical analysis instrumentation directly with the biological experiments and then sending the data back to earth using radio communication. Thus, scientists can do the analysis in space and NASA won’t have to design a reentry vehicle to bring the experiments back to earth . This will not only save a significant amount of money, but it will also make more room on the rocket to take experiments up in space."

Chris Culbertson | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>