Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new West Nile therapy cures disease in mice

25.04.2005


West Nile virus alarmed Americans when it made its first U.S. appearance in New York City in 1999. It has since spread from coast to coast, sickened more than 16,000 Americans and killed more than 600. As the virus spread, medical investigators hastened research to develop an effective vaccine or therapy. None currently exist, but a newly published paper by researchers at Washington University in St. Louis points to a promising treatment. This research, published today online by Nature Medicine, was funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.



The research team developed an infection-fighting antibody that mimics one produced by people whose immune systems successfully fend off the West Nile virus. The researchers tested their antibody in mice and say its success warrants further development and testing in people with West Nile disease.

"West Nile virus has emerged in the United States as a regular seasonal threat, particularly for people over 50. We currently do not have a proven therapy for people with serious West Nile disease, so we will continue to aggressively pursue all promising leads for an effective treatment," says Anthony S. Fauci, M.D., director of NIAID.


Scientists do not know why some people infected with West Nile virus have no symptoms or a mild flu-like illness, while in others the virus invades the central nervous system and causes paralysis or coma. "We could give this antibody to mice as long as five days after infection, when West Nile virus had entered the brain, and it could still cure them," says Washington University senior investigator Michael Diamond, M.D., Ph.D., who headed the research team, which is supported in part by the NIAID-funded Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases. "It also completely protected the mice against death."

The researchers decided to develop the potential treatment--known as a monoclonal antibody--after finding that antibodies taken from the blood of people who recovered from West Nile fever could cure mice infected with West Nile virus. But antibodies derived from human blood have potential disadvantages: they vary in their ability to fight the disease, and although all precautions are taken to purify the antibodies, the blood might harbor other potentially dangerous infectious agents.

The Washington University scientists made 46 monoclonal antibodies against West Nile virus and then eliminated the less effective ones through a tedious molecular-level screening process. They then turned to Rockville, MD-based MacroGenics Inc., to create a human-like version of the most effective antibody. MacroGenics stitched the part of the antibody that cripples the West Nile virus into the scaffold of a human antibody. The monoclonal antibody was several hundred times more potent in cell culture tests than antibodies obtained from people who had recovered from West Nile virus infection.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>