Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new West Nile therapy cures disease in mice

25.04.2005


West Nile virus alarmed Americans when it made its first U.S. appearance in New York City in 1999. It has since spread from coast to coast, sickened more than 16,000 Americans and killed more than 600. As the virus spread, medical investigators hastened research to develop an effective vaccine or therapy. None currently exist, but a newly published paper by researchers at Washington University in St. Louis points to a promising treatment. This research, published today online by Nature Medicine, was funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.



The research team developed an infection-fighting antibody that mimics one produced by people whose immune systems successfully fend off the West Nile virus. The researchers tested their antibody in mice and say its success warrants further development and testing in people with West Nile disease.

"West Nile virus has emerged in the United States as a regular seasonal threat, particularly for people over 50. We currently do not have a proven therapy for people with serious West Nile disease, so we will continue to aggressively pursue all promising leads for an effective treatment," says Anthony S. Fauci, M.D., director of NIAID.


Scientists do not know why some people infected with West Nile virus have no symptoms or a mild flu-like illness, while in others the virus invades the central nervous system and causes paralysis or coma. "We could give this antibody to mice as long as five days after infection, when West Nile virus had entered the brain, and it could still cure them," says Washington University senior investigator Michael Diamond, M.D., Ph.D., who headed the research team, which is supported in part by the NIAID-funded Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases. "It also completely protected the mice against death."

The researchers decided to develop the potential treatment--known as a monoclonal antibody--after finding that antibodies taken from the blood of people who recovered from West Nile fever could cure mice infected with West Nile virus. But antibodies derived from human blood have potential disadvantages: they vary in their ability to fight the disease, and although all precautions are taken to purify the antibodies, the blood might harbor other potentially dangerous infectious agents.

The Washington University scientists made 46 monoclonal antibodies against West Nile virus and then eliminated the less effective ones through a tedious molecular-level screening process. They then turned to Rockville, MD-based MacroGenics Inc., to create a human-like version of the most effective antibody. MacroGenics stitched the part of the antibody that cripples the West Nile virus into the scaffold of a human antibody. The monoclonal antibody was several hundred times more potent in cell culture tests than antibodies obtained from people who had recovered from West Nile virus infection.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>