Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists ’see’ basis of antibiotic resistance

25.04.2005


Using X-ray crystallography, researchers at Yale have "seen" the structural basis for antibiotic resistance to common pathogenic bacteria, facilitating design of a new class of antibiotic drugs, according to an article in Cell.



In recent years, common disease-causing bacteria have increasingly become resistant to antibiotics, such as erythromycin and azithromycin. Although the macrolide antibiotics in this group are structurally different, all work by inhibiting the protein synthesis of bacteria, but not of humans. They bind tightly to an RNA site on the bacterial ribosomes, the cellular machinery that makes protein, but not to the human ribosomes.

Bacteria can become resistant to antibiotics in several different ways. When bacteria mutate to become resistant to one of these antibiotics, they usually are resistant to all antibiotics in the group.


Studies led by Sterling Professors Thomas A. Steitz and Peter B. Moore in the departments of molecular biophysics and biochemistry and chemistry at Yale illuminate one of the ways that bacteria can become resistant to macrolide antibiotics.

"A major health concern of antibiotic resistance is that two million people every year get infections in hospital facilities and 90,000 per year die from them," said Steitz. "Macrolide-resistant Staphylococcus aureus is the most common of these infections."

Some of the clinically important bacteria are resistant because of mutation of a single nucleotide base, from an A to a G, in the site where macrolide antibiotics bind to the ribosome. The Yale group was able to "see" structural alterations when antibiotics were bound to ribosomes with different sensitivity to the drugs because of mutation.

They can now explain why that mutation has the effect that it does. "The mutant G has an amino group that pokes into the center of the macrolide ring, causing it to back off the ribosome by an Angstrom or so," said Steitz.

The change of that one base in the ribosomal RNA reduced the ability of the antibiotic to bind by a factor of 10,000.

Mutation of this type happens naturally, but rarely -- only one in 100,000 to one in 10,000,000 bacterial mutations will cause this kind of resistance. However, each bacterium can divide as often as every 20 minutes, allowing one with a resistant mutation to rapidly cause a dangerous infection.

Steitz and Moore are among the co-founders of Rib-X, a New Haven-based start-up company that has exclusive license to the high-resolution crystal structure of the ribosome they revealed. Rib-X is utilizing this information to create new antibiotics; they project Phase-I trials of their first drug to begin in early 2006.

Daqi Tu, a student, and Gregor Blaha, a postdoctoral fellow in molecular biophysics and biochemistry and associate of the Howard Hughes Medical Institute, are co-authors on the study.

Funding for this research was obtained from the National Institutes of Health and the Agouron Institute.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>