Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yale scientists ’see’ basis of antibiotic resistance


Using X-ray crystallography, researchers at Yale have "seen" the structural basis for antibiotic resistance to common pathogenic bacteria, facilitating design of a new class of antibiotic drugs, according to an article in Cell.

In recent years, common disease-causing bacteria have increasingly become resistant to antibiotics, such as erythromycin and azithromycin. Although the macrolide antibiotics in this group are structurally different, all work by inhibiting the protein synthesis of bacteria, but not of humans. They bind tightly to an RNA site on the bacterial ribosomes, the cellular machinery that makes protein, but not to the human ribosomes.

Bacteria can become resistant to antibiotics in several different ways. When bacteria mutate to become resistant to one of these antibiotics, they usually are resistant to all antibiotics in the group.

Studies led by Sterling Professors Thomas A. Steitz and Peter B. Moore in the departments of molecular biophysics and biochemistry and chemistry at Yale illuminate one of the ways that bacteria can become resistant to macrolide antibiotics.

"A major health concern of antibiotic resistance is that two million people every year get infections in hospital facilities and 90,000 per year die from them," said Steitz. "Macrolide-resistant Staphylococcus aureus is the most common of these infections."

Some of the clinically important bacteria are resistant because of mutation of a single nucleotide base, from an A to a G, in the site where macrolide antibiotics bind to the ribosome. The Yale group was able to "see" structural alterations when antibiotics were bound to ribosomes with different sensitivity to the drugs because of mutation.

They can now explain why that mutation has the effect that it does. "The mutant G has an amino group that pokes into the center of the macrolide ring, causing it to back off the ribosome by an Angstrom or so," said Steitz.

The change of that one base in the ribosomal RNA reduced the ability of the antibiotic to bind by a factor of 10,000.

Mutation of this type happens naturally, but rarely -- only one in 100,000 to one in 10,000,000 bacterial mutations will cause this kind of resistance. However, each bacterium can divide as often as every 20 minutes, allowing one with a resistant mutation to rapidly cause a dangerous infection.

Steitz and Moore are among the co-founders of Rib-X, a New Haven-based start-up company that has exclusive license to the high-resolution crystal structure of the ribosome they revealed. Rib-X is utilizing this information to create new antibiotics; they project Phase-I trials of their first drug to begin in early 2006.

Daqi Tu, a student, and Gregor Blaha, a postdoctoral fellow in molecular biophysics and biochemistry and associate of the Howard Hughes Medical Institute, are co-authors on the study.

Funding for this research was obtained from the National Institutes of Health and the Agouron Institute.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>