Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds enzyme activity promotes rare form of leukemia, offers potential target for new drugs

22.04.2005


Scientists at the University of North Carolina at Chapel Hill have identified an enzyme that helps trigger the development of leukemia, a cancer of blood cells.



The enzyme hDOT1L activates a set of genes that plays a key role in the rare and largely incurable acute myeloid leukemia (AML). This disease affects less than 2 percent of the estimated 16,000 individuals diagnosed with acute leukemia nationwide each year. The discovery, based on research using bone marrow cells from mice, offers a potential target for new drugs against this form of leukemia, the researchers said.

The new findings appear in today’s (April 21) issue of the journal Cell. The report demonstrates that hDOT1L helps transform, or immortalize, bone marrow cells, causing their unrestrained growth, a hallmark of leukemia, the researchers said.


Dr. Yi Zhang, associate professor of biochemistry and biophysics at UNC’s School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center, led the study. Zhang is the university’s first Howard Hughes Medical Institute investigator, one of the most prestigious appointments among biomedical researchers.

"We demonstrate that not only is hDOT1L required for transformation of bone marrow cells, but, more importantly, that its enzymatic activity is required to maintain the transformed status," said Zhang. "That means if we have a way to prevent the activity of hDOT1L, then the affected cells of particular leukemia patients can be killed."

Zhang investigates a group of enzymes that modifies five core histone proteins forming the molecular scaffold that helps organize DNA within the nucleus of every cell. Histone modifications affect gene activity and include methylation, in which a methyl component is attached to the histone protein.

"The prevailing model is that methylation on histones serves as a docking site," Zhang said. "It will recruit proteins that ’read’ this histone modification, and it’s those proteins that directly have an impact on gene expression - either activating or silencing a gene."

As an enzyme that adds a methyl component to histone H3, hDOT1L activates the gene associated with that histone. Zhang and fellow researchers now provide evidence that in some leukemias, hDOT1L activates so-called Hox genes, whose increased activity is closely tied to AML.

Leukemia most often arises from a chromosomal translocation, a breaking and joining of two distinct chromosomes, that creates a hybrid gene. The product of the hybrid gene is called a "fusion protein," meaning that the newly formed gene encodes a protein made of fragments from each of the two genes that were fused together by the rearrangement.

Some leukemia patients carry rearrangements of a gene on chromosome 11 called the mixed lineage leukemia gene, or MLL. Translocations involving MLL are most often found in childhood leukemias and as a secondary cancer in adults who have undergone chemotherapy to treat a previous leukemia.

Individuals with MLL translocations have an especially poor prognosis, with less than a 50 percent survival rate.

"There are more than 40 proteins that have been found fused to MLL in leukemia patients, and different ones can cause leukemia by different mechanisms," Zhang said.

When MLL functions as it should, without a fusion partner, it binds to and controls the expression of Hox genes, which in turn control cell growth and maturation. Until now, the role of the MLL-AF10 fusion protein in causing leukemia was unknown.

"We show how at least one MLL fusion can lead to the over-expression of Hox genes in bone marrow cells. MLL-AF10 directs hDOT1L to the Hox genes, where it normally shouldn’t be, causing a different pattern of histone methylation and, therefore, extraordinarily high activity of the Hox genes," Zhang said.

Treatments used for AML patients have been largely ineffective against cells harboring the MLL-AF10 fusion protein, drawing attention to the need for a new medication.

Zhang’s study reveals that leukemia cells containing MLL-AF10 require hDOT1L to survive. When the researchers introduced into leukemia cells a defective form of hDOT1L, one that cannot methylate histone proteins, the cells were no longer able to grow. "This study highlights the potential of hDOT1L as a possible drug target," Zhang added.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>