Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds enzyme activity promotes rare form of leukemia, offers potential target for new drugs

22.04.2005


Scientists at the University of North Carolina at Chapel Hill have identified an enzyme that helps trigger the development of leukemia, a cancer of blood cells.



The enzyme hDOT1L activates a set of genes that plays a key role in the rare and largely incurable acute myeloid leukemia (AML). This disease affects less than 2 percent of the estimated 16,000 individuals diagnosed with acute leukemia nationwide each year. The discovery, based on research using bone marrow cells from mice, offers a potential target for new drugs against this form of leukemia, the researchers said.

The new findings appear in today’s (April 21) issue of the journal Cell. The report demonstrates that hDOT1L helps transform, or immortalize, bone marrow cells, causing their unrestrained growth, a hallmark of leukemia, the researchers said.


Dr. Yi Zhang, associate professor of biochemistry and biophysics at UNC’s School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center, led the study. Zhang is the university’s first Howard Hughes Medical Institute investigator, one of the most prestigious appointments among biomedical researchers.

"We demonstrate that not only is hDOT1L required for transformation of bone marrow cells, but, more importantly, that its enzymatic activity is required to maintain the transformed status," said Zhang. "That means if we have a way to prevent the activity of hDOT1L, then the affected cells of particular leukemia patients can be killed."

Zhang investigates a group of enzymes that modifies five core histone proteins forming the molecular scaffold that helps organize DNA within the nucleus of every cell. Histone modifications affect gene activity and include methylation, in which a methyl component is attached to the histone protein.

"The prevailing model is that methylation on histones serves as a docking site," Zhang said. "It will recruit proteins that ’read’ this histone modification, and it’s those proteins that directly have an impact on gene expression - either activating or silencing a gene."

As an enzyme that adds a methyl component to histone H3, hDOT1L activates the gene associated with that histone. Zhang and fellow researchers now provide evidence that in some leukemias, hDOT1L activates so-called Hox genes, whose increased activity is closely tied to AML.

Leukemia most often arises from a chromosomal translocation, a breaking and joining of two distinct chromosomes, that creates a hybrid gene. The product of the hybrid gene is called a "fusion protein," meaning that the newly formed gene encodes a protein made of fragments from each of the two genes that were fused together by the rearrangement.

Some leukemia patients carry rearrangements of a gene on chromosome 11 called the mixed lineage leukemia gene, or MLL. Translocations involving MLL are most often found in childhood leukemias and as a secondary cancer in adults who have undergone chemotherapy to treat a previous leukemia.

Individuals with MLL translocations have an especially poor prognosis, with less than a 50 percent survival rate.

"There are more than 40 proteins that have been found fused to MLL in leukemia patients, and different ones can cause leukemia by different mechanisms," Zhang said.

When MLL functions as it should, without a fusion partner, it binds to and controls the expression of Hox genes, which in turn control cell growth and maturation. Until now, the role of the MLL-AF10 fusion protein in causing leukemia was unknown.

"We show how at least one MLL fusion can lead to the over-expression of Hox genes in bone marrow cells. MLL-AF10 directs hDOT1L to the Hox genes, where it normally shouldn’t be, causing a different pattern of histone methylation and, therefore, extraordinarily high activity of the Hox genes," Zhang said.

Treatments used for AML patients have been largely ineffective against cells harboring the MLL-AF10 fusion protein, drawing attention to the need for a new medication.

Zhang’s study reveals that leukemia cells containing MLL-AF10 require hDOT1L to survive. When the researchers introduced into leukemia cells a defective form of hDOT1L, one that cannot methylate histone proteins, the cells were no longer able to grow. "This study highlights the potential of hDOT1L as a possible drug target," Zhang added.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>