Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-mapping technique aids understanding of

22.04.2005


The power of a new technique to map connections among nerve cells in the brain has a UT Southwestern Medical Center scientist dreaming of solving the mysteries of sleep.



By tracking which nerve cells in the mouse brain stimulate others, researchers in Japan and at UT Southwestern found that a type of neuron responsible for keeping animals awake receives inhibitory signals from neurons active only during sleep, as well as reinforcing, positive signals from nerve cells that are very active during wakefulness.

The findings, available online and appearing in the April 21 issue of the journal Neuron, shed light on the complex mechanisms involved in sleep regulation and may help to explain why once a person wakes up and moves around, he tends to stay awake.


"We all know subjectively and objectively that there is a very strong force regulating sleep, but there is very little knowledge about the actual biological mechanism controlling sleep," said Dr. Masashi Yanagisawa, professor of molecular genetics at UT Southwestern and senior author of the study. "Eventually my dream is to elucidate all the pathways regulating sleep."

Dr. Yanagisawa and his colleagues focused on neurons in the brain that produce the protein orexin, which helps keep animals awake. In humans, a lack of, or deficiency in, orexin causes narcolepsy, a rare disease in which people uncontrollably fall asleep, have excessive daytime sleepiness and experience sudden muscle weakness called cataplexy.

Because orexin-producing neurons play such a key role in regulating sleep, determining how they are connected to other neurons in the brain is an important step toward understanding how and why we sleep.

Mapping the neurons to which orexin neurons send signals has been relatively easy, Dr. Yanagisawa said, but determining which neurons send signals to orexin neurons has been a challenge. A brain-mapping technique developed recently by French scientists provided Dr. Yanagisawa and his research group new hope for navigating the neural network.

The technique involves genetically engineering mice to produce a "tracer" protein only in a certain population of neurons. The tracer, a nontoxic fragment of the tetanus toxin, transfers itself from one neuron in retrograde fashion to neurons "upstream" -- those from which the tracer-producing neuron receives signals. Researchers then track the tracer to map the upstream neurons.

Dr. Yanagisawa and his colleagues are the first to apply the technique in order to study a specific neural pathway. They introduced the tracer into mice so that it was expressed only in orexin neurons, which are found in a part of the brain called the lateral hypothalamus. The researchers found that some of the upstream neurons in the anterior hypothalamus, known to be active only during sleep, send inhibitory signals to orexin neurons preventing them from releasing orexin.

"Neurons producing orexin keep you awake, and they also stabilize wakefulness," Dr. Yanagisawa said. "In order to fall sleep, you somehow must inhibit these orexin neurons. It appears that sleep-active neurons in a specific region of the brain are doing just that, keeping the animals asleep."

The researchers also found that during wakefulness, orexin neurons activate cells in other parts of the brain that negatively feed back to the sleep-active neurons in the anterior hypothalamus, keeping them from becoming active.

"This makes perfect sense," said Dr. Yanagisawa, a Howard Hughes Medical Institute investigator at UT Southwestern. "When one group of neurons is active, the other group must be inactive, and vice versa. It’s a seesaw, or flip-flop, mechanism. That’s important because you don’t want to be half-asleep. You want to be either completely awake or completely asleep."

Another finding from the Neuron study may help explain why once you’re awake and moving around, you tend to stay awake, a process called activity induced consolidation of wakefulness.

Some neurons in the basal forebrain produce the chemical acetylcholine. These cells are very active during wakefulness when an animal or human is aroused and attentive. Previous studies have shown that orexin neurons project to these cells, sending positive signals downstream to help keep them active. The new study, however, shows that these acetylcholine-producing neurons, or cholinergic cells, are upstream of the orexin neurons as well - the two send positive, reinforcing signals back and forth.

"By being active, animals fire up their cholinergic cells, which feed back to orexin neurons positively, and orexin neurons feed back to cholinergic cells," Dr. Yanagisawa said. "This creates a self-reinforcing loop, a positive feedback system that’s very important to consolidating wakefulness."

Dr. Yanagisawa said the trigger that causes the sleep "seesaw" to tip from one side to the other and maintain a proper balance between time spent awake and time spent asleep is still a big mystery in brain science. By shedding light on the network of neural connections involved in sleep, he said, his and other studies will help unravel the mechanisms involved in sleep homoeostasis.

In addition to his laboratory at UT Southwestern, Dr. Yanagisawa also directs the ERATO Yanagisawa Orphan Receptor Project in Japan, where these studies were carried out. He and his colleague, Dr. Takeshi Sakurai of the University of Tsukuba, lead author on the study, discovered orexin in 1998 when Dr. Sakurai was a postdoctoral researcher in Dr. Yanagisawa’s UT Southwestern lab.

The research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Japan Science and Technology Agency.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>