Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain scans reveal how gene may boost schizophrenia risk

22.04.2005


Clues about how a suspect version of a gene may slightly increase risk for schizophrenia are emerging from a brain imaging study by the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH). The gene variant produced a telltale pattern of activity linked to production of a key brain messenger chemical.


Areas in prefrontal cortex where blood flow (yellow) was linked to midbrain dopamine synthesis, in opposite directions in subjects with val and met COMT gene type. PET data is superimposed on 3-D MRI view of brain. Source: NIMH Clinical Brain Disorders Branch


An inverted "U" models the relationship between COMT gene type, prefrontal cortex activity, and prefrontal dopamine levels. The cortex functions optimally when dopamine activity is neither too low nor too high, corresponding to the top of the curve. Dopamine is thought to "tune" prefrontal neurons by regulating signal-to-noise ratios - but in opposite directions, depending on whether an individual has inherited the val or met COMT gene type. Source: NIMH Clinical Brain Disorders Branch



The study found that increased activity in the front of the brain predicted increases in the neurotransmitter dopamine in the middle of the brain in subjects with the suspected schizophrenia-related version of the gene. Yet, the opposite relationship held for subjects with the other of two common versions of the gene.

"A tiny variation in the gene that makes the enzyme that breaks down dopamine causes a complete flipflop – not a mere difference in degree – in dopamine activity in these two brain areas," explained NIMH’s Dr. Andreas Meyer-Lindenberg, who, along with Dr. Karen Berman and colleagues, reported their findings in the April 10, 2005 online edition of Nature Neuroscience.


The NIMH study also for the first time confirms in living humans that activity of the front brain area, the prefrontal cortex, is regulated by dopamine production in the midbrain, which, in turn, is regulated by these two common gene variants.

Schizophrenia, a severe mental illness marked by hallucinations and delusions, affects one percent of the population and is treated with antipsychotic drugs that block dopamine. The prefrontal cortex is critical for motivation, learning in response to reward, and working memory – functions impaired in schizophrenia, which is thought to involve a dopamine imbalance.

Individuals inherit two copies (one from each parent) of the gene for the enzyme catecho-O-methyltransferase (COMT), which chemically breaks down dopamine. It comes in two versions, val and met, so a person can have two of the same version or one of each. Since it results in considerably weaker enzyme action, people with the met version are thought have more dopamine in their prefrontal cortex and perform better on tasks involving that part of the brain. Schizophrenia patients typically perform poorly on such tasks. Earlier studies had shown that inheriting two copies of the more common val version leads to a slightly higher risk for schizophrenia and a signature pattern of midbrain dopamine activity.

To see how the two gene versions affect the living human brain, the NIMH researchers scanned 24 healthy young adults twice using PET (positron emission tomography), which uses radioactive tracers to visualize brain function. The first scan measured subjects’ overall brain activity while they performed working memory tasks. The second scan used a dopamine tracer to reveal the synthesis of the neurotransmitter in the midbrain.

Frontal cortex activity increased as midbrain dopamine activity increased in subjects with val, but decreased in those who had inherited two copies of the met COMT gene.

This "trait-like characteristic" of COMT gene type fits a model in which the prefrontal cortex functions optimally when dopamine activity is neither too low nor too high, corresponding to the top of an upside-down "U" (see diagram below). In this model, people with val fall on the left (rising) slope, with lower dopamine levels, while those with met fall on the right (falling) slope, with higher dopamine levels.

The findings suggest that dopamine "tunes" prefrontal neurons (brain cells) to achieve an optimal signal-to-noise ratio, much like a fine-tuning dial on a radio. For the clearest signal, the "dial" must be turned in opposite directions, depending on which version of the COMT gene one inherits: up with val, down with met. In people with val and schizophrenia, which is marked by too little prefrontal and too much midbrain dopamine, the dial is turned "way up," the NIMH researchers speculate.

"We expected that there would be different regulatory mechanisms between the two gene types, but it’s amazing how well the data support this tuning model," said Berman. "The study is important for our understanding of schizophrenia because it clarifies the neural mechanism for a well-established risk gene."

Also participating in the NIMH brain imaging study were: Dr. Daniel Weinberger, Philip Kohn, Dr. Bhaskar Kolachana, Shane Kippenhan, NIMH; Dr. Aideen McInerney-Leo, Dr. Robert Nussbaum, National Human Genome Research Institute (NHGRI).

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>