Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overworked brains release adenosine to slow cells, trigger sleep, UT Southwestern researchers find

21.04.2005


Why people get drowsy and fall asleep, and how caffeine blocks that process, are the subjects of a new study by researchers at UT Southwestern Medical Center. When cells in a certain part of the brain become overworked, a compound in the brain kicks in, telling them to shut down. This causes people to become drowsy and fall asleep. Alter that natural process by adding coffee or tea, and the brain compound – called adenosine – is blocked, and people stay awake.

These findings, available online and in the April 21 issue of the journal Neuron, offer new clues regarding the function of the brain in the body’s natural sleep process, as well as potential targets for future treatments for insomnia and other sleep problems. Prolonged increased neural activity in the brain’s arousal centers triggers the release of adenosine, which in turn slows down neural activity in the arousal center areas. Because the arousal centers control activity throughout the entire brain, the process expands outward and causes neural activity to slow down everywhere in the brain.

"Insomnia and chronic sleep loss are very common problems," said Dr. Robert W. Greene, professor of psychiatry and senior author of the study. "In addition, all the major psychiatric disorders, including depression, schizophrenia and post-traumatic stress disorder have sleep disruption as a prominent symptom.



"If we can understand better some of the factors involved in what makes us normally fall asleep, we can start to understand what might be going wrong when we don’t."

Showing that increased brain cell activity triggers drowsiness also explains how caffeine works in helping people fight sleep. "We knew that coffee kept us awake," Dr. Greene said. "Now we know why: Coffee and tea are blocking the link between the prolonged neural activity of waking and increased levels of adenosine in cells, which is why they prevent us from getting drowsy."

Past studies by Dr. Greene and his colleagues have shown that adenosine may act as a "fatigue factor." When adenosine levels increase in the arousal centers -- as happens with prolonged waking -- mammals tend to fall asleep. But what hasn’t been known before is what triggers the release of adenosine to induce sleep.

"Neurons in the brain do things -- such as talk to each other, process information and coordinate body activities – which is called neural activity," said Dr. Greene, who holds the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. "When they do this over a long period of time, more and more adenosine is released and feeds back onto the cells to quiet them down. It’s like telling them: ’You guys have worked too hard; take it easy, and refresh yourselves.’

"What we have shown in our study is that it’s this prolonged neural activity of being awake that causes adenosine levels to go up, which in turn makes a person feel drowsy. It’s the brain’s way of achieving a proper balance between the neural activity of waking and the need for sleep. If something goes wrong with this adenosine system, you may end up with insomnia."

Other UT Southwestern researchers on the study were Dr. David Chapman, a postdoctoral researcher in psychiatry, and Dr. Dario Brambilla, a former postdoctoral researcher in psychiatry, now at the University of Milan Medical School in Italy.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>