Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overworked brains release adenosine to slow cells, trigger sleep, UT Southwestern researchers find

21.04.2005


Why people get drowsy and fall asleep, and how caffeine blocks that process, are the subjects of a new study by researchers at UT Southwestern Medical Center. When cells in a certain part of the brain become overworked, a compound in the brain kicks in, telling them to shut down. This causes people to become drowsy and fall asleep. Alter that natural process by adding coffee or tea, and the brain compound – called adenosine – is blocked, and people stay awake.

These findings, available online and in the April 21 issue of the journal Neuron, offer new clues regarding the function of the brain in the body’s natural sleep process, as well as potential targets for future treatments for insomnia and other sleep problems. Prolonged increased neural activity in the brain’s arousal centers triggers the release of adenosine, which in turn slows down neural activity in the arousal center areas. Because the arousal centers control activity throughout the entire brain, the process expands outward and causes neural activity to slow down everywhere in the brain.

"Insomnia and chronic sleep loss are very common problems," said Dr. Robert W. Greene, professor of psychiatry and senior author of the study. "In addition, all the major psychiatric disorders, including depression, schizophrenia and post-traumatic stress disorder have sleep disruption as a prominent symptom.



"If we can understand better some of the factors involved in what makes us normally fall asleep, we can start to understand what might be going wrong when we don’t."

Showing that increased brain cell activity triggers drowsiness also explains how caffeine works in helping people fight sleep. "We knew that coffee kept us awake," Dr. Greene said. "Now we know why: Coffee and tea are blocking the link between the prolonged neural activity of waking and increased levels of adenosine in cells, which is why they prevent us from getting drowsy."

Past studies by Dr. Greene and his colleagues have shown that adenosine may act as a "fatigue factor." When adenosine levels increase in the arousal centers -- as happens with prolonged waking -- mammals tend to fall asleep. But what hasn’t been known before is what triggers the release of adenosine to induce sleep.

"Neurons in the brain do things -- such as talk to each other, process information and coordinate body activities – which is called neural activity," said Dr. Greene, who holds the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. "When they do this over a long period of time, more and more adenosine is released and feeds back onto the cells to quiet them down. It’s like telling them: ’You guys have worked too hard; take it easy, and refresh yourselves.’

"What we have shown in our study is that it’s this prolonged neural activity of being awake that causes adenosine levels to go up, which in turn makes a person feel drowsy. It’s the brain’s way of achieving a proper balance between the neural activity of waking and the need for sleep. If something goes wrong with this adenosine system, you may end up with insomnia."

Other UT Southwestern researchers on the study were Dr. David Chapman, a postdoctoral researcher in psychiatry, and Dr. Dario Brambilla, a former postdoctoral researcher in psychiatry, now at the University of Milan Medical School in Italy.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>