Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overworked brains release adenosine to slow cells, trigger sleep, UT Southwestern researchers find

21.04.2005


Why people get drowsy and fall asleep, and how caffeine blocks that process, are the subjects of a new study by researchers at UT Southwestern Medical Center. When cells in a certain part of the brain become overworked, a compound in the brain kicks in, telling them to shut down. This causes people to become drowsy and fall asleep. Alter that natural process by adding coffee or tea, and the brain compound – called adenosine – is blocked, and people stay awake.

These findings, available online and in the April 21 issue of the journal Neuron, offer new clues regarding the function of the brain in the body’s natural sleep process, as well as potential targets for future treatments for insomnia and other sleep problems. Prolonged increased neural activity in the brain’s arousal centers triggers the release of adenosine, which in turn slows down neural activity in the arousal center areas. Because the arousal centers control activity throughout the entire brain, the process expands outward and causes neural activity to slow down everywhere in the brain.

"Insomnia and chronic sleep loss are very common problems," said Dr. Robert W. Greene, professor of psychiatry and senior author of the study. "In addition, all the major psychiatric disorders, including depression, schizophrenia and post-traumatic stress disorder have sleep disruption as a prominent symptom.



"If we can understand better some of the factors involved in what makes us normally fall asleep, we can start to understand what might be going wrong when we don’t."

Showing that increased brain cell activity triggers drowsiness also explains how caffeine works in helping people fight sleep. "We knew that coffee kept us awake," Dr. Greene said. "Now we know why: Coffee and tea are blocking the link between the prolonged neural activity of waking and increased levels of adenosine in cells, which is why they prevent us from getting drowsy."

Past studies by Dr. Greene and his colleagues have shown that adenosine may act as a "fatigue factor." When adenosine levels increase in the arousal centers -- as happens with prolonged waking -- mammals tend to fall asleep. But what hasn’t been known before is what triggers the release of adenosine to induce sleep.

"Neurons in the brain do things -- such as talk to each other, process information and coordinate body activities – which is called neural activity," said Dr. Greene, who holds the Sherry Knopf Crasilneck Distinguished Chair in Psychiatry, in Honor of Albert Knopf. "When they do this over a long period of time, more and more adenosine is released and feeds back onto the cells to quiet them down. It’s like telling them: ’You guys have worked too hard; take it easy, and refresh yourselves.’

"What we have shown in our study is that it’s this prolonged neural activity of being awake that causes adenosine levels to go up, which in turn makes a person feel drowsy. It’s the brain’s way of achieving a proper balance between the neural activity of waking and the need for sleep. If something goes wrong with this adenosine system, you may end up with insomnia."

Other UT Southwestern researchers on the study were Dr. David Chapman, a postdoctoral researcher in psychiatry, and Dr. Dario Brambilla, a former postdoctoral researcher in psychiatry, now at the University of Milan Medical School in Italy.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>