Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Louder neurons form more connections

21.04.2005


As the brain develops, neurons reach out helter-skelter to form new connections, only a small number of which take hold. How the brain chooses which connections to keep and which to prune back appears to be governed by which branches have the most electrical activity-a finding that could help to explain how early experiences guide brain development.



The work, published in the April 21 issue of Nature, takes advantage of tiny, see-through zebrafish. Stephen Smith, PhD, professor of molecular and cellular physiology at the Stanford University School of Medicine, and his graduate student Jackie Hua immersed 3-day-old fish in a breathable, Jell-O-like substance that kept the fish alive but immobile. The researchers could then focus video cameras on the fish’s developing brain to watch how the branches of individual neurons grew and shrank over time.

It turns out that determining which of the branches will grow follows an age-old axiom: The squeaky neuron gets the grease. "Louder neurons drown out their quieter neighbors," Smith said.


Working out this seemingly simple rule took some technical finesse. Hua created zebrafish with a few brain cells that made a protein that prevented them from firing their normal electrical signals. These cells were also engineered to produce a protein that glowed green under the appropriate light.

Hua looked for green neurons in her immobilized fish to see how their branches fared compared with neighboring neurons that fired normally. The green neurons didn’t compete well.

Although the poorly-firing green neurons still formed extensive branching structures, which the researchers call the neuron’s arbor, most of those branches eventually receded while neighboring neurons formed a large number of stable connections. When the fish were five days old, the green neurons had a smaller, less complex arbor than those of neighboring neurons.

"We know that the arbor should occupy a certain amount of space, and in these fish it doesn’t take up that much space," Hua said.

Hua gave those losing neurons a fighting chance through another molecular twist. She managed to silence some neurons near the green, quietly-firing cells. When she did that, the green cells were able to compete successfully and formed longer, more complex arbors.

Although this work specifically examined the brains of fish, Smith said the same rules likely apply to all neurons, including those in the human brain. "Probably these same things are happening all the time," he said.

Neurons that fire regularly while learning to recognize a new person’s face, for example, will form larger arbors with more connections that help retain that memory for the future. Likewise, neurons stimulated by engaging toys or experiences will probably create larger arbors than similar neurons in less exciting conditions.

"We are looking at a dynamic part of development," Smith said. "These are the connections that let us think and fight and love."

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>