Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selenium will have critical role in prostate cancer treatment

21.04.2005


Researchers at Fox Chase Cancer Center in Philadelphia have come a step closer to understanding selenium’s molecular role in causing prostate cancer cells to self-destruct. According to data presented today at the 96th Annual Meeting of the American Association for Cancer Research in Anaheim, Calif., selenium helps malignant cells overcome their resistance to TRAIL-induced apopstosis (self-inflicted cell death). Previous studies had shown that TRAIL, a cytotoxic agent being investigated as a new therapeutic agent for cancer, causes malignant cells to self-destruct. Yet some cells resist the treatment.



"Therefore, agents that sensitize malignant cells to TRAIL-mediated cell death might be of particular importance for the development of novel anti-tumor therapeutic regimens," said lead researcher Vladimir M. Kolenko M.D., Ph.D.

Selenium, a non-metallic trace element essential to human health, could be just that agent. "Selenium and vitamin E are the most promising dietary supplements considered for use in the reduction of prostate cancer risk," Kolenko said. "This enthusiasm is reflected in the initiation of the large National Cancer Institute sponsored trial - SELECT (Selenium and Vitamin E Chemoprevention Trial). The epidemiologic studies within SELECT will be based on 32,000 men."


With this in mind, Kolenko and colleagues went a step further and studied the effect of methylseleninic acid (MSA), a novel selenium metabolite, in inducing apoptosis in different types of prostate cancer cells (androgen-dependent LNCaP and androgen-independent, PC-3 and DU-145).

"The cytotoxic effect of TRAIL in combination with MSA in LNCaP and DU-145 cells was evaluated using a DNA fragmentation assay," Kolenko explained. "Treatment of prostate cancer cells with TRAIL alone for 24 hours induced negligible levels of apoptosis. Treatment with MSA alone also failed to induce a significant level of cell death in LNCaP cells, although it induced notable apoptosis in DU-145. However, concomitant treatment with TRAIL and MSA resulted in profound DNA fragmentation in both LNCaP and DU-145 cells" (74.3% and 61.5% correspondingly).

"Taken together our data reveal a potential mechanism for the synergistic effect of TRAIL and MSA on the induction of apoptosis in prostate cancer cells," Kolenko concluded. "The combination of TRAIL and MSA may be a novel strategy for the development of innovative therapeutic modalities targeting apoptosis-resistant forms of prostate cancer."

Colleen Kirsch | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>