Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selenium will have critical role in prostate cancer treatment

21.04.2005


Researchers at Fox Chase Cancer Center in Philadelphia have come a step closer to understanding selenium’s molecular role in causing prostate cancer cells to self-destruct. According to data presented today at the 96th Annual Meeting of the American Association for Cancer Research in Anaheim, Calif., selenium helps malignant cells overcome their resistance to TRAIL-induced apopstosis (self-inflicted cell death). Previous studies had shown that TRAIL, a cytotoxic agent being investigated as a new therapeutic agent for cancer, causes malignant cells to self-destruct. Yet some cells resist the treatment.



"Therefore, agents that sensitize malignant cells to TRAIL-mediated cell death might be of particular importance for the development of novel anti-tumor therapeutic regimens," said lead researcher Vladimir M. Kolenko M.D., Ph.D.

Selenium, a non-metallic trace element essential to human health, could be just that agent. "Selenium and vitamin E are the most promising dietary supplements considered for use in the reduction of prostate cancer risk," Kolenko said. "This enthusiasm is reflected in the initiation of the large National Cancer Institute sponsored trial - SELECT (Selenium and Vitamin E Chemoprevention Trial). The epidemiologic studies within SELECT will be based on 32,000 men."


With this in mind, Kolenko and colleagues went a step further and studied the effect of methylseleninic acid (MSA), a novel selenium metabolite, in inducing apoptosis in different types of prostate cancer cells (androgen-dependent LNCaP and androgen-independent, PC-3 and DU-145).

"The cytotoxic effect of TRAIL in combination with MSA in LNCaP and DU-145 cells was evaluated using a DNA fragmentation assay," Kolenko explained. "Treatment of prostate cancer cells with TRAIL alone for 24 hours induced negligible levels of apoptosis. Treatment with MSA alone also failed to induce a significant level of cell death in LNCaP cells, although it induced notable apoptosis in DU-145. However, concomitant treatment with TRAIL and MSA resulted in profound DNA fragmentation in both LNCaP and DU-145 cells" (74.3% and 61.5% correspondingly).

"Taken together our data reveal a potential mechanism for the synergistic effect of TRAIL and MSA on the induction of apoptosis in prostate cancer cells," Kolenko concluded. "The combination of TRAIL and MSA may be a novel strategy for the development of innovative therapeutic modalities targeting apoptosis-resistant forms of prostate cancer."

Colleen Kirsch | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>