Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Used in a new way, RNA interference permanently silences key breast cancer gene

21.04.2005


In laboratory mouse experiments, researchers at The University of Texas M. D. Anderson Cancer Center have developed a way to use RNA interference (RNAi) so that it permanently hampers breast cancer development. The technique permanently silences activated STAT3, a crucial gene found in some human breast tumors, thus reducing the cancer’s ability to become invasive.

The study, presented at the annual meeting of the American Association for Cancer Research (AACR), used a modified form of RNAi to silence STAT3 in a permanent way. Typically, only a transient effect is achieved with RNAi before the tiny bits of genetic material are become inactive as the cell population continues to expand.

"We are a long way from using this technique in patients, but this study shows that that it may be possible to use RNAi in more than just experiments that silence genes temporarily," says the study’s principal investigator, Ralph Arlinghaus, Ph.D., a professor and chair of the Department of Molecular Pathology. Details of the study appeared in the April 1 2005 issue of the journal Cancer Research. "The technique is also providing some valuable insights into the role of STAT3 and its downstream targets," adds Arlinghaus, who also will discuss the work in a mini symposium at the AACR meeting.



RNAi has been employed as a laboratory tool to knock down expression of genes in a variety of cells and organisms. It works by introducing a small double-stranded RNA (RNAi) that specifically targets a gene’s product, its messenger RNA. This action then blocks translation and production of the protein that the gene encodes.

In this study, the researchers used a lentivirus (a type of retrovirus) to deliver a specifically designed long-acting small interfering RNA (termed a short hairpin RNA, shRNA) for mouse STAT3 into a mouse breast cancer cell line. They chose STAT3 because when activated, it is involved in the formation of multiple types of tumors, including breast cancer. When hijacked by a cancer cell, the activated gene is believed to interfere with the ability of key immune cells to attack a growing tumor.

Investigators used the lentivirus to permanently insert the RNAi into the genome of the cancer cell. After a single exposure of this delivery system, they found 75 percent of laboratory breast cancer cells stopped expressing the STAT3 protein. The researchers also discovered that expression of a protein called TWIST that is known to be involved in cancer metastasis was drastically reduced in the STAT3 knockdown cells, thus greatly reducing the ability of these cancer cells to invade normal tissues like the lung. "Somehow STAT3 is controlling TWIST expression, and this is important to know with regards to activated STAT3 and its involvement in cancer metastasis," Arlinghaus says.

When the mouse breast cells transduced with STAT3, shRNA were then tested in immunocompetent mice, researchers found that the treated breast cancer cells were unable to form breast tumors either at the site of injection or at distant sites typically involved in metastatic breast cancer in this mouse model.

Arlinghaus points out that a human therapy based on these findings is not on the horizon because lentivirus delivery systems haven’t been approved for human use yet, and because of the many problems associated with treating metastatic breast cancer. But he says that proof that RNAi can be used to permanently silence such critical genes as STAT3 "has potential application for treating breast cancer."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>