Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tumor suppressor gene linked to cancer predisposition


Scientists have identified a new gene that appears to be linked to a small but significant percentage of familial cancer cases – as well as seemingly randomly occurring malignancies.

The finding has scientists re-examining commonly held beliefs about the nature and frequency of genetic mutation as a cause of cancer. Familial cancer, in contrast to inherited cancer, is defined as multiple cases of cancer in one family that cannot be accounted for by classic rules of inheritance.

The findings are published in the April 21 issue of the New England Journal of Medicine.

“The findings suggest that a lot of cancer we once thought of as random may not be so random after all,” says George Calin, an adjunct assistant professor and research scientist in molecular virology, immunology and medical genetics and the first author of the study. He added that the findings hold important diagnostic and economic implications, as well.

Most geneticists believe that less than 5 percent of cancer is inherited, primarily through mutation in a relatively small number of well-known genes. Calin says that this new gene, however, dubbed ARLTS1, (ADP – Ribosylation Factor-Like Tumor Suppressor 1) can also increase a person’s chances of developing cancer, but only a little.

“ARLTS1 is one of an emerging set of genes whose effects are subtle, but which still play an important and predictable role in the development of cancer in some people.”

Researchers have known for years that a handful of well-known genes (like BRCA1 and BRCA2, for example) can, when mutated, dramatically increase a person’s risk of developing cancer. This “second tier” of genes, on the other hand, may heighten the risk of cancer for a much larger group of patients, says Carlo Croce, director of the Human Cancer Genetics Program at Ohio State and senior author of the study.

“Detecting alterations in such genes may more clearly predict who is predisposed to getting cancer, and who is not,” he adds.

Calin and Croce, both members of Ohio State’s Comprehensive Cancer Center, working with an international team of colleagues, had long suspected that a particular stretch of DNA on chromosome 13 – known as a rich source of mutations linked to various malignancies – might be the location of other genes important in carcinogenesis. Multiple tests with a portion of that DNA yielded ARLTS1 as a specific new gene.

ARLTS1 belongs to the Ras superfamily of genes that regulates cell growth. Most of the genes in that family are oncogenes, meaning that when activated, they cause cells to grow out of control. ARLTS1, on the other hand, is a tumor suppressor gene – a gene that normally helps the body identify and destroy suspicious-looking cells before they undergo malignant transformation and spread. When ARLTS1 is altered, it loses that ability, giving tumors a chance to establish themselves and grow.

To determine the extent to which ARLTS1 appears in various populations, researchers compared tumor tissue or blood samples from 325 patients with different forms of familial or sporadic cases of cancer to the blood of 475 healthy donors or patients with diseases other than cancer. The families, from the United States, France, Italy and Romania, included patients with chronic myeloid leukemia, or thyroid, colorectal, breast, lung or early stage pancreatic cancer.

Through multiple experimental and computational methods, researchers found that mutated ARLTS1 is three times more likely to be present in patients with familial cancers, and two times more likely to be present in random cases of cancer, than it is in the general population.

Calin says normal ARLTS1 activity can be compromised through deletion, mutation or alteration by a chemical change called methylation, adding that defective ARLTS1 also leads to inhibition of apoptosis, or normal cell death.

“We feel this discovery is significant on several levels. First, it adds one more player to the growing number of genes that are known to be active in the development of some forms of cancer,” says Croce.

“We also see this same gene mutated in small number of cancers that we once thought were randomly occurring in the general population. This is important for patients because one day in the near future, we will be able to incorporate a test for this gene – and others – into a simple screening tool that may reveal the extent to which a person is at risk for developing cancer.”

Calin says such tests could mean earlier detection of disease “which is not only good health, but good business.”

Grants from the National Cancer Institute, the Italian Ministry of Public Health and the Italian Association for Cancer Research supported the project.

Researchers from many cancer centers contributed to the study, including scientists from the Kimmel Cancer Center, Fox Chase Cancer Center; University of California at San Diego; Dana Farber Institute; University of Ferrara, Italy; Aarhus University, Denmark; Fundeni Hospital, Romania; University La Sapienza, Italy; Pasteur Institute, Paris; University of Catanzaro, Italy; Kyushu University, Japan; and Instituto Dermopatico dell’Immacolata, Italy.

Michelle Gailiun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>