Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose new method for studying ion channel kinetics

21.04.2005


Scientists working at Los Alamos National Laboratory have developed a new method for the study of ion channel gating kinetics. An ion channel is a protein pore that lets ions (charged atoms such as calcium) pass through a cell’s membrane. The method fits data to a new class of models, called manifest interconductance rank (MIR) models, which will give researchers a better understanding of the mechanisms by which ion channels open and close.



In research published in the current issue of the prestigious Proceedings of the National Academy of Sciences, Laboratory theorists William Bruno and John Pearson, and postdoctoral researcher Jin Yang describe their work using independent open-to-closed transitions to simplify the models of ion channel gating kinetics that are used to represent undetectable changes between different open and closed states.

Ion channels gating functions are critical to biological function. In humans, for example, nerves and muscles could not function without ion channels and you would not be able to think or move. Faulty ion channels in humans have been shown to cause severe diseases like cystic fibrosis and diabetes and more subtle, but still dangerous physiological effects, like over-responses to general anesthetics. According to Bruno, "we found a new way of simplifying the models that reflects the fact that one’s knowledge is incomplete about what transitions can happen between states of a channel. For example, in the case of one open state, (O), and two closed (C) states, it is impossible to tell whether transitions connect the O to both C’s (C-O-C), or to only one (C-C-O). We have found a set of simple models that can fit any data uniquely, so that data can always distinguish models in our set (it contains C-C-O but not C-O-C). This should allow molecular biologists to come up with better, simpler models for what is happening in ion channels, even when the complete picture remains hidden."


John Pearson added, "Ions such as calcium, sodium and potassium play a fundamental role in nearly all biological processes. Calcium, for example, is important in fertilization, cell death, cell division, human hearing, memory, vision, and the immune system. It also plays a factor in cancer, Alzheimer’s, alcohol caused neuronal damage, migraine headaches, cardiomyopathy (heart failure), hypertension and a host of other normal and abnormal physiological functions. Other ions and ion channels are important for processes such as muscle contraction and nerve conduction."

Researchers have long been able to isolate a single channel and detect the flow of ions and to electrically observe whether the channel open and closed. By looking at how long the channel stays open or closed, they also could infer that there are several different open and closed states. Using models called Aggregated Markov Processes, the researchers are able to represent the undetectable changes between different open states, and between different closed states. However, there are an enormous number of ways to connect even a small number of states. For example, only four open and four closed states connect in more than 2 million possible ways.

Using a data set of patch clamp recordings, the Los Alamos researchers can apply the MIR method to mathematically reduce the level of redundancy among the millions of possible ion channel topologies. Patch clamps are instruments using in studying ion channel kinetics. The overall goal of the research is to provide tools and strategies for understanding the topologies of ion channels that allow researchers to focus on smaller, more manageable data sets.

The MIR research fits into a broader area of expertise that Los Alamos National Laboratory maintains in the field of complex systems modeling in general, and modeling in theoretical biology and biophysics in particular.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.
Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>