Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing up chromosomes

21.04.2005


Researchers at the University of Dundee have made a significant new discovery on how cells behave and protect themselves against cancers and congenital disorders as reported in Nature tomorrow (Thursday April 21).



Dr Tomo Tanaka and his team members at the University’s School of Life Sciences, Drs Kozo Tanaka, Naomi Mukae and Hilary Dewar, in collaboration with Drs Euan James and Alan Prescott and researchers in Germany, have uncovered how cells prepare for the process of chromosome separation.

All human cells, except eggs and sperms, contain 46 chromosomes, all of which carry vital genetic information. Because genetic information is crucial for the proper function of cells for the organs and tissues that they organise, all chromosomes must be precisely copied and separated into two cells, known as the daughter cells, during each cell division. Otherwise cells would die, become transformed into cancer cells, or cause congenital diseases such as Down’s syndrome.


Cells regulate chromosome separation by a network of threads called microtubules. To prepare chromosome separation, the microtubule network must first capture chromosomes. However, how microtubules capture chromosomes has until now been a complete mystery. By visualizing this step in live cells, the research team has successfully analysed the crucial but so-far concealed process.

Dr Tomo Tanaka says "We can liken chromosomes to big fishes that must be caught. To catch the fishes, cells are equipped with sophisticated fishing lines that are called microtubules. Our study discovered which parts of ’fishes’ are hooked up on the ’fishing line’ and how ’fishes’ are pulled in using the ’fishing line’. Very interestingly, the strength of the ’fishing line’ is enhanced only when ’fishes’ are caught on the line. We discovered how cells make this happen. I do not think any grand master of fishing can beat cells in our body, whose ’fishing lines’ or microtubules are never broken when they pull gigantic ’fishes’ out of water."

The research team believes that this is one of the most crucial steps on how cells assure their chromosome inheritance during their divisions to prevent cell death, cancers and other diseases. The team is currently trying to discover what ’baits’ are used to attract ’big fishes’ towards ’fishing lines’.

Dr Tomo Tanaka is a Wellcome Trust Career Development Fellow and Principal Investigator in the Division of Gene Regulation and Expression based in the Wellcome Trust Biocentre at the University of Dundee’s School of Life Sciences. The research is funded by The Wellcome Trust and Cancer Research UK.

Angela Durcan | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prarp05/chromosomes.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>