Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique may speed drug production, reduce costs and waste

20.04.2005


U of T researchers develop new chemical reaction



University of Toronto researchers have a developed a new chemical reaction that could greatly accelerate pharmaceutical production, while also cutting costs and toxic by-products.

The reaction, designed by chemistry Professor Mark Lautens and graduate student Eric Fang, simplifies the creation of the basic molecular framework found in many natural products and popular pharmaceuticals like some cholesterol-lowering drugs. Until now, synthesizing this framework - an indole - was inefficient, requiring six to 10 steps and often producing toxic by-products. "This new method only takes three steps and results in less waste," says Lautens, the NSERC-Merck Frosst Industrial Research Chair in New Medicinal Agents via Catalytic Reactions and AstraZeneca Professor of Organic Synthesis.


Indoles are ring structures containing carbon and nitrogen. In the process, the researchers used a metallic element as a catalyst to form two chemical bonds and create a diverse range of indole-containing compounds. These compounds could then be used to make drugs now on the market or form the basis of new therapeutic drugs.

Lautens says this new molecular-level technique could equal big savings and less environmental impact. "In order to make a hundred kilograms of these best-selling drugs, there are often hundreds of litres of solvent used, not to mention the many purification processes involved. Not only are you speeding up the process, you’re also reducing waste and energy used in manufacturing."

A provisional patent was filed by U of T’s Innovations Foundation in March. The research was funded by the Natural Sciences and Engineering Research Council of Canada.

Prof. Mark Lautens | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>