Technique may speed drug production, reduce costs and waste

U of T researchers develop new chemical reaction

University of Toronto researchers have a developed a new chemical reaction that could greatly accelerate pharmaceutical production, while also cutting costs and toxic by-products.

The reaction, designed by chemistry Professor Mark Lautens and graduate student Eric Fang, simplifies the creation of the basic molecular framework found in many natural products and popular pharmaceuticals like some cholesterol-lowering drugs. Until now, synthesizing this framework – an indole – was inefficient, requiring six to 10 steps and often producing toxic by-products. “This new method only takes three steps and results in less waste,” says Lautens, the NSERC-Merck Frosst Industrial Research Chair in New Medicinal Agents via Catalytic Reactions and AstraZeneca Professor of Organic Synthesis.

Indoles are ring structures containing carbon and nitrogen. In the process, the researchers used a metallic element as a catalyst to form two chemical bonds and create a diverse range of indole-containing compounds. These compounds could then be used to make drugs now on the market or form the basis of new therapeutic drugs.

Lautens says this new molecular-level technique could equal big savings and less environmental impact. “In order to make a hundred kilograms of these best-selling drugs, there are often hundreds of litres of solvent used, not to mention the many purification processes involved. Not only are you speeding up the process, you’re also reducing waste and energy used in manufacturing.”

A provisional patent was filed by U of T’s Innovations Foundation in March. The research was funded by the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Prof. Mark Lautens EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors