Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find promising cancer-fighting power of synthetic cell-signaling molecule

20.04.2005


Novel anti-cancer compounds called Enigmols suppress the growth of human cell lines representing cancers of the prostate, breast, colon, ovary, pancreas, brain and blood, and reduce tumors in three animal studies, new research shows.


Enigmols cause the disappearance of nuclear beta-catenin, restoring cells to their normal behavior. Image Courtesy of Al Merrill



In addition, Enigmols did not show side effects at effective doses, according to the research conducted at the Georgia Institute of Technology, Emory University and Wayne State University. The studies were funded by the National Cancer Institute.

"Many agents suppress cancer cells in a Petri dish and then not in the whole animal, or have unacceptably high toxicity for normal tissues," said Georgia Tech Professor of Biology Al Merrill. "Finding that Enigmols are effective in three animal models leads us to hope these may be a new approach to treat cancer." However, human trials must still be done to determine safety and efficacy in people, the researchers cautioned.


The findings will be presented by Georgia Tech postdoctoral researcher Qiong Peng on April 19 in a "late-breaking" poster at the American Association for Cancer Research 96th Annual Meeting in Anaheim, Calif. After considering comments from other scientists at the meeting, the researchers plan to submit the results to a scientific journal in coming weeks.

Enigmols are synthetic analogs of sphingolipids, a group of cell-signaling molecules that help cells decide whether to grow or die via a controlled process called apoptosis. Cancer cells are usually defective in these regulatory pathways, so researchers hypothesized that structurally modified sphingolipid analogs might be even better at making cancer cells behave more normally.

Merrill and his collaborators have been studying sphingolipids for more than a decade, having first shown that sphingolipids in food, such as low-fat dairy products and soybeans, suppress tumors in mouse models for colon cancer.

Encouraged by these findings, Emory University Professor of Chemistry Dennis Liotta and his colleagues at Emory prepared almost 100 sphingolipid-based analogs that lead to the discovery that the Enigmols were the most potent. The lead compounds were named "Enigmols" because sphingolipids were named after the sphinx for their enigmatic properties. Emory University holds the patent on compounds of this type.

In addition to being more potent than naturally occurring sphingolipids, the researchers have also found that Enigmols can be administered orally and appear in often-difficult-to reach organs such as the prostate. "This is what suggested to us that Enigmols should be tested against other cancer types," Merrill explained.

Subsequently, the researchers found that Enigmols suppress the growth of human prostate tumors implanted in mice, which is a commonly used model to test new anti-cancer drugs. They were also effective in two other mouse models for colon cancer.

"We do not know why Enigmols affect such a wide range of tumor cell types," Merrill said. "But it may be due to the involvement of sphingolipids in multiple cell-signaling pathways. This means a compound may affect several different targets, rather than just one."

In essence, Enigmols may act like a multi-drug combination therapy, the investigators speculate.

Enigmols are also being tested in combination with other cancer chemotherapeutic drugs using funds from EmTech Bio -- a life sciences technology business incubator operated by Georgia Tech and Emory. This research is coordinated with Slainte Bioceuticals, a start-up biotechnology company in metro Atlanta that is helping to bring this potential drug to market.

"Even if Enigmols are effective in humans, the greatest success is likely to come from the right combination of drugs that interact in a synergistic way," Merrill noted. So information from the EmTech Bio study may be particularly useful if Enigmols enter human clinical trials because the patients will have undergone, and will probably be undergoing, other treatments anyway, he added.

In addition to Merrill, Peng and Liotta, the research team is also comprised of: researcher Cameron Sullards of Georgia Tech and Emory researchers Dirck Dillehay, David Pallas, Selwyn Hurwitz and Anatoliy Bushnev; graduate students Holly Symolon and Sarah Pruett of Emory and Jeremy Allegood of Georgia Tech; post-doctoral fellow Steve Moody; and Georgia Tech research technicians Carrie Pack, Samuel Kelly and Elaine Wang. Additional collaborators at Wayne State University are Professors Eva Schmelz and Paul Roberts.

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>