Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method shows how precisely gene expression signals are copied in DNA replication

20.04.2005


Genetic information that determines hair color or whether an individual might develop a particular cancer is passed from one generation to the next through DNA. Genes encoded in the DNA contain information, but a process called methylation is one factor that often controls how that information is expressed.



A group of University of Washington researchers has devised a method that combines DNA sampling and mathematical modeling to find out how accurately methylation patterns are copied during DNA replication. That could pave the way for understanding the role methylation plays in normal gene expression and how it factors in the development of human disease.

In methylation, a methyl group (made up of a carbon atom and three hydrogen atoms) is attached to a specific gene sequence in one part of DNA. The density of methyl saturation determines how the gene is expressed. The densest saturation turns the gene off so that it is not expressed at all, and less-dense saturation allows the gene to be expressed at different levels.


The result can be obvious, for instance, in a calico cat and its multicolored coat, said Diane Genereux, a visiting UW biology graduate student and lead author of a paper describing the new measuring technique in the April 19 edition of the Proceedings of the National Academy of Sciences.

"In a calico cat, different genes that express coat color are on and off in different parts of the cat’s coat, so you get patches of different-colored fur," Genereux said.

Methylation typically passes from genes in a DNA strand to the same genes in a daughter strand created during DNA replication. The new technique allows researchers to examine how faithfully this "maintenance" methylation is carried out across generations and how consistently it occurs on the same gene sequence, said Brooks Miner, a UW research scientist in biology and a co-author of the paper.

But DNA molecules also can undergo what is called "de novo," or new, methylation in which a methyl group shows up on a DNA strand at a place where it did not appear before. That could change how that particular gene sequence is expressed.

Understanding methylation rates is important because the rate of genetic mutation is very low, a tiny fraction of 1 percent, while the rate of methylation changes that alter or suppress gene expression is substantially higher.

In the past, researchers could look at only one strand of DNA at a time and so could not conduct a side-by-side comparison of where methylation was occurring. An earlier paper from the same research group, led by Charles Laird, a UW biology professor, introduced a molecular method to look at both DNA strands together and observe methylation differences between them.

"When we look at both DNA strands, we know one strand has to be the parent and one has to be the daughter, but we don’t know which is which," Miner said. "The new mathematical model allows us to infer the rates of both maintenance and de novo methylation without directly identifying parent and daughter DNA strands."

Ultimately, such knowledge could lead to better understanding of, perhaps even treatment for, some cancers or genetic conditions such as one called fragile X syndrome, the most common cause of genetic mental impairments, from slight learning disabilities to severe cognitive disorders. Fragile X is caused by abnormal methylation of a gene called FMR1, Miner said, and other conditions have similar causes.

"Methylation is a normal biological process that, in the case of fragile X, is happening at the wrong place at the wrong time," he said. "It’s a basic process, but it’s not fully understood."

The new method lets the researchers see how consistently methylation occurs in different places on a DNA strand. Applying mathematical models to a DNA sequence allows them to measure methylation rates for different areas of the genome, Genereux said.

"As with any inference, we know we’re not going to get the precise rates," she said. "To get an exact answer, we’d have to look at all the cells in an individual. Our method provides a way to get useful approximations from a small DNA sample."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>