Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists infuse rat spinal cords with brain-derived human stem cells

20.04.2005


Unveiling a delivery method that may one day help surgeons treat the deadly neurodegenerative disease amyotrophic lateral sclerosis (ALS), researchers at the University of Wisconsin-Madison have inserted engineered human stem cells into the spinal cords of ALS-afflicted rats.



Reporting their work today (April 19) in the journal Human Gene Therapy, the scientists directed certain types of neural stem cells to secrete a neuron-protecting protein before injecting them into the rat spinal cord where motor neurons reside. Motor neurons dictate muscle movement by relaying messages from the spinal cord and brain to the rest of the body. ALS causes the neurons to progressively decay and die.

Notably, the UW-Madison stem cell researchers did not work with human embryonic stem cells, blank-slate cells that arise during the earliest stages of development and can develop into any of the 220 tissue and cell types in humans. Scientists have long regarded these cells as a crucial ingredient in the quest to cure spinal injuries and neurodegenerative disease.


Rather, the scientists worked with more specialized neural stem cells -- known as neural progenitor cells -- that arise from primitive stem cells during the first few weeks of human brain development. Unlike embryonic stem cells, they can only develop into neural tissue and they are incapable of living forever, as embryonic stem cells can. But the neural progenitor cells are much more appropriate for clinical use because, unlike embryonic stem cells, they can grow in the absence of animal derivatives that are considered a potential source of contamination, says co-author Clive Svendsen, a professor of anatomy based at the university’s Waisman Center, and a leading authority on neural progenitor cells.

"This is the first study that shows that certain types of stem cells can survive and release powerful protective proteins in the spinal cord of rats with a genetic form of ALS," says Svendsen.

Once inside the brain or spinal cord, neural progenitor cells grow into neuron-supporting stem cells called astrocytes. Some researchers believe that ALS causes astrocyte malfunction, which in turn causes motor neurons to degenerate and eventually die.

Several research groups around the world are trying to unleash the therapeutic potential of neural progenitor cells. But the UW-Madison work is the first "double whammy," says Svendsen, because the injected neural progenitor cells develop into astrocyte-like cells and simultaneously secrete glial cell-line derived neurotrophic factor (GDNF), a naturally occurring protein that preserves motor neurons during development. The twofold approach has a better chance of protecting healthy neurons that haven’t already succumbed to ALS, he says.

Approximately 5,600 people in the United States are annually diagnosed with ALS. Also known as Lou Gehrig’s disease, ALS is not well understood, though mutations in the SOD-1 gene -- or superoxide dismutase-1 -- are known to play a role. ALS attacks nerve cells in the brain and spinal cord, and as motor neurons progressively die, the brain can no longer initiate and control muscle movement.

The UW-Madison researchers tackled several technical barriers trying to ensure that the progenitor cells correctly gather near the motor neurons in the spinal cord, while continuing to pump GDNF once there, says Sandra Klein, lead author of the study and a UW-Madison doctoral researcher.

But making GDNF-emitting stem cells was the first puzzle to grapple with. Svendsen and his team approached the problem using a genetically engineered viral structure known as a lentivirus. Collaborating with Patrick Aebischer, a researcher in Switzerland, the scientists manipulated the lentivirus’ genetic machinery, directing it to secrete GDNF. The team then infected neural progenitor cells with the GDNF-pumping lentivirus. Once the cells were infected, the scientists washed the virus away, leaving self-sustaining colonies of GDNF-producing progenitor cells.

The next problem was actually getting the cells into the right location of the ALS rat spinal cord.

"Nobody had shown that human progenitors could be delivered right into the region of the dying motor neurons," says Klein, who chose to work with rats because they have a larger spinal cord.

Klein bore into the base of the rat spine, using a micro-pipette, or tiny dropping device, to deliver the progenitor cells into the bottom region of the spinal cord where motor neurons are located. After months of trial and error, Klein finally ascertained through staining tests that the progenitor cells were indeed gathering near the neurons and releasing GDNF in the area.

Svendsen says the approach could be regarded as a novel form of gene therapy where progenitor cells are used as "mini pumps" to deliver protein.

It is crucial now to see whether greater numbers of GDNF-bearing progenitor cells can actually prolong the life of an ALS-ridden rat, says Svendsen. If so, he aims to plan a human safety trial with a small group of patients. Ordinarily, the researchers would first test the work in primates, but good ALS primate models do not exist due to the ravaging nature of the disease, he says.

Compared to small rats, humans will most likely require more extensive spinal cord transplants, the researchers predict. If successful, a similar progenitor cell protein delivery method could radically help to combat several other ailments, including Huntington’s disease, Parkinson’s disease and stroke.

Clive Svendsen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>