Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop ’genetic blueprint’ to predict response to esophageal cancer treatments

20.04.2005


For the first time, researchers appear to be able to use a comprehensive panel of genetic variants to predict how a patient with esophageal cancer will respond to a spectrum of cancer treatments.



At the annual meeting of the American Association for Cancer Research (AACR), researchers from The University of Texas M. D. Anderson Cancer Center report that six different gene variants can predict an improved outcome in patients treated with two different chemotherapy drugs and/or with radiation therapy.

For example, the researchers say that a combination of several gene variants in patients treated with one type of chemotherapy (5-FU) more than doubled survival to 51 months, compared to 25 months in patients treated with the same drug who did not have these variants.


They say the findings represent a leap forward in the goal to provide tailored therapy to individual patients because it offers a genetic blueprint for gauging the potential effectiveness of all common esophageal cancer treatment, not just an analysis of how one or two "candidate" genes respond to a single treatment.

"Our data strongly suggest that combined pathway-based analysis may provide powerful clinical outcome predictors for esophageal cancer as well as for other cancers," says the study’s lead author Xifeng Wu, M.D., Ph.D., a professor in the Department of Epidemiology.

"This points to a promising new direction for cancer pharmacogenetics," she says. "Our hope is to have a gene chip one day that can analyze a patient’s genetic makeup and help physicians predict response to a wide variety of therapeutic drugs before treatment even begins."

Esophageal cancer is highly aggressive; approximately 14,520 new esophageal cancer cases and 13,570 associated deaths are expected in 2005, according to the American Cancer Society. Almost half of new cases are diagnosed at an advanced stage, when the five-year survival rate is just 14 percent. Surgery is offered to most patients, as well as one or all of the following treatments - an anti-metabolite chemotherapy agent (5FU), an alkylating agent (cisplatin) and radiation treatment.

Knowing that variations exist in how a person biologically processes those therapies, the researchers collected tissue samples from 210 esophageal cancer patients. They then developed a "pathway analysis" that examined variants in 40 different genes believed to be involved in metabolism, DNA damage repair activity and action of these of therapies. Next, they compared differences in gene variants with outcomes in patients.

"This was like putting together a recipe, searching for different ingredients that work well together for patients," Wu says.

They found that patients with the best outcomes were those who had gene variants that were less effective at neutralizing the killing power of the cancer treatments. Conversely, patients whose genes efficiently counteracted chemotherapy and radiation treatment had shorter survival times overall.

Findings include:

  • For 5FU treatment, patients who had two different variants (AC and AA) in the MTHFR gene pathway that metabolizes folate, the drug’s active ingredient, had significantly improved survival (a median of 51 months) and a longer time to recurrence (36 months) compared to patients with the AA genotype (25 months and 17 months, respectively). "That makes sense because the AC and AA variant genes are less effective in metabolizing folate, which enables the drug to work better," Wu says.
  • Significantly reduced recurrence rates and improved survival also were seen in patients treated with cisplatin who had particular variants of a multi-drug resistance gene (MDR). Proteins produced by this gene prevent cisplatin from entering cancer cells, and variants of the gene (CT and TT) that are less effective at doing so provide more therapeutic benefit to patients, Wu says. Patients with CT variant had a median survival of 29 months and those with a TT variant survived an average of 42 months. On the other hand, patients with the CC variant survived an average of just 17 months.
  • The same pattern held true in analyzing genetic response to radiation treatment. Patients who had inherited less effective variants of a base excision repair gene (XRCC1) that repairs DNA damage from radiation exhibited longer survival. Those with the GG variant had a median survival of more than 57 months, compared to almost 23 months for patients with a GA variant and only 14 months for those with an AA variant.

The researchers also discovered an additive effect between these genes and others that conferred smaller advantages. The higher the number of beneficial variants the patient had, the longer survival was, they found.

As promising as the study is, significant hurdles remain before these findings can be incorporated into treatment, Wu says. Because more data are needed to support their findings, the investigators are accumulating a cohort of 800 esophageal patients from which they can draw a comprehensive genetic profile using blood samples.

If successful, such pathway-based analyses can be conducted for the wide variety of cancers that are treated with 5FU, cisplatin and radiation, as well as other drug treatments, Wu says.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>