Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemokines orchestrate more than migration for immune cells

20.04.2005


Scientists have discovered that chemical signals thought to function primarily as cellular traffic directors play a much more complex role in the activation of the adaptive immune response than was previously expected. The research, published in the April issue of Immunity, demonstrates that the molecules belonging to a class of proteins called chemokines do more than simply guide migration of the immune cells that are activated in the very early stages of infection.



Dendritic cells (DCs) are present in tissues that are closely associated with the external environment. DCs function as a kind of sentinel for the immune system, constantly sampling their surroundings for potentially harmful pathogens. Once they encounter a bacteria or virus, the DCs mature and migrate from the periphery to lymphoid tissues where they activate T cells, critical immune cells that are essential to the immune response.

Chemokines are molecules that have been shown to direct the migration of DCs and recent research has indicated that they may also play a role in DC maturation. Dr. Martin F. Bachman from Cytos Biotechnology in Switzerland and colleagues were interested in identifying new proteins that might indirectly govern T cell responses through activation of DCs.


The researchers found that the chemokines CCL19 and CCL21 induced maturation of activated DCs and a subsequent upregulation of potent stimulatory molecules that enhanced T cell proliferation. Mice that lack CCL19/CCL21 had only partially activated DCs even when the DCs were activated by pathogen signals, suggesting that the chemokines are required for full maturation of DCs and proper activation of T cells.

"These findings indicate that induction of DC maturation is an important property of CCL19/CCL21 and suggest that chemokines may not only organize the migration of DCs but also directly regulate their ability to prime T cell responses," writes Dr. Bachmann. A clear understanding of the influence of these chemokines on T cell immune responses will be useful for rational design of future antiviral and anticancer therapies.

Heidi Hardman | EurekAlert!
Further information:
http://www.immunity.com
http://www.cell.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>