Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy completely corrects hemophilia in laboratory animals


Newborn mice and dogs with hemophilia A were restored to normal health through gene therapy developed by researchers at Washington University School of Medicine in St. Louis. The technique introduced into the animals’ cells a gene that makes clotting factor VIII, a protein missing because of a genetic defect.

"We are really pleased with the results, because the animals produced about 20 times more factor than has been achieved in prior attempts using gene therapy for hemophilia A in dogs," says senior author Katherine Parker Ponder, M.D., associate professor of medicine and of biochemistry and molecular biophysics.

In addition, the technique using newborn animals had the advantage of not prompting an immune response, which in many other cases eventually blocks the blood clotting activity of introduced factor VIII in hemophilic animals. Since treatment more than a year ago, the blood of the mice and dogs in this study has maintained a normal level of clotting factor activity, and the animals have had no incidents of bleeding. The study will be reported in the April 26 issue of the Proceedings of the National Academy of Sciences.

Hemophilia is an inherited bleeding disorder caused by genetic mutations on chromosome X that prevent normal production of certain blood clotting factors. A defective gene for clotting factor VIII is responsible for hemophilia A, the form occurring in 80 percent of cases. Because females carrying a defective gene can rely on a normal copy of the gene on their second X chromosome, hemophilia almost always occurs in males. One in 5,000 males are born with the disorder.

"Hemophilia greatly restricts patients’ everyday lives," says Ponder, a hematologist at Barnes-Jewish Hospital. "People with the disease don’t heal well after injuries or surgery. Even running can cause bleeding into the joints."

For their own safety, hemophiliacs must be near a refrigerated supply of clotting factor at all times. Over the long term, hemophiliacs suffer from joint damage and other complications related to excess bleeding.

Gene therapy for hemophilia A has been especially challenging because the gene for factor VIII is quite large and therefore hard to fit into viral vectors, which serve as the gene delivery vehicle. The researchers eliminated parts of the factor VIII gene and other genetic components to minimize the material needed and used a large viral vector called gamma retroviral vector.

The viral vector carrying factor VIII genes was injected into the blood of 11 newborn hemophilic mice and two newborn hemophilic dogs. The viral vector also contained a short DNA promoter sequence to make the gene active only in liver cells, one of the sites of factor VIII production in non-hemophiliacs.

The normal mechanisms of viral reproduction enabled insertion of the genetic material from the engineered vectors into cells in the animals. After treatment, blood tests demonstrated all of the treated animals were producing factor VIII. The mice achieved an average of 139 percent of normal factor VIII activity and the dogs an average of 115 percent of normal factor VIII activity in a blood clotting assay. This activity level has remained stable for one and a half years. In comparison, untreated animals with hemophilia A have less than one percent normal factor VIII activity.

"This level of expression of factor VIII in dogs is especially interesting, because in other attempts the results in large animals have not been successful," Ponder says.

The researchers worked with newborn animals for two reasons. First, their livers are still growing. So genes integrated into a liver cell will be reproduced with each new generation of cells, increasing the number of cells containing functional clotting factor genes in the adult animal.

Liver tests done when the animals were about a year old showed that the treated mice had an average of two factor VIII genes per liver cell. In the dogs, an average of one in eight liver cells had the new gene.

Second, newborn mice and dogs have a less mature immune system than do adults, making it less likely they will raise an immune response to the introduced factor VIII. The immune reaction, known as inhibitor formation, diminishes the activity of the clotting factor and has caused failure in previous attempts to correct hemophilia in mice using gene therapy.

The animals in this study have not formed inhibitors against the factor VIII protein after more than a year of follow-up.

"Naturally, the ultimate goal is for gene therapy to work in humans, but humans have a more mature immune system at birth than mice," Ponder says. "In animals more closely related to humans, there will probably be more risk of inhibitor formation, so the next step needs to be gene therapy trials in primates with hemophilia to see if we can prevent inhibitor formation."

Gwen Ericson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>