Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression pattern predicts multiple drug resistance, treatment failure in pediatric leukemia

19.04.2005


St. Jude Children’s Research Hospital discovery of genetic links to multi-drug resistance gives clinicians new insight into the cause of treatment failure and suggests targets for novel anti-leukemic drugs



The discovery of a specific pattern of gene expression linked to multiple-drug resistance of leukemic cells is giving researchers crucial information into why standard therapies fail to cure some children with acute lymphoblastic leukemia (ALL). This finding, from investigators at St. Jude Children’s Research Hospital, could lead to development of drugs that would overcome that resistance.

This new finding helps to explain why about 20 percent of children with ALL, the most common form of childhood cancer, are not cured with the same drug therapy that cures the remaining 80 percent of children with this disease. A report on the study that produced this new information appears in the April issue of Cancer Cell.


Drug resistance is a major cause of treatment failure, and the biochemical mechanisms responsible for de novo resistance are largely unknown. De novo resistance means that the resistance is "built into" the leukemic cells through a particular pattern of gene expression, rather than acquired through genetic mutation during treatment. Cross-resistance to multiple drugs suggests a poor prognosis and likely involves biochemical mechanisms that are different from those linked to single-drug resistance.

The investigators sought to identify the specific pattern of gene expression in ALL cells that is linked to de novo cross-resistance to four widely used antileukemic agents, and to determine how those genes affected treatment outcome.

"The identification of a particular genetic expression pattern linked to cross-resistance takes us a significant step forward in understanding why treatment fails to cure certain children who initially looked like good candidates for standard chemotherapy," said William E. Evans, Pharm.D., St. Jude director and member of St. Jude Pharmaceutical Sciences. "The results also give us crucial information into treatment failure that could help us design more effective treatments for the children our current treatment strategies fail to cure."

Evans is senior author of the Cancer Cell report.

The ALL cells used in the study were isolated from the bone marrow or the blood of patients with newly diagnosed disease who were being treated at St. Jude, the Dutch Childhood Oncology Group at the Sophia Children’s Hospital in the Netherlands or the German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia at the Children’s University Hospital in Hamburg, Germany.

Using pharmacogenomics techniques to assess gene expression levels in ALL cells, researchers identified 45 genes closely linked with leukemic cells’ ability to resist treatment by at least two of the most widely used antileukemic drugs. The drugs tested were prednisolone, vincristine, asparaginase and daunorubicin. The team also identified 139 genes that are closely linked to a previously unknown and unexpected type of drug resistance in which leukemic cells are resistant to asparaginase (ASP) but sensitive to vincristine (VCR). This "discordant" type of resistance (resistance to one drug and sensitivity to another) was associated with a poor response in children who had this pattern of gene expression.

Cross-resistant patients had significantly worse outcomes as a group. Among patients whose ALL cells were cross-resistant, only 53 percent had a five-year, relapse-free survival compared to 91 percent of those whose ALL cells were cross-sensitive to all the drugs.

Among patients whose ALL cells were ASP-sensitive plus VCR-resistant, the five-year, relapse-free survival rate was 93 percent, compared to 56 percent among patients whose ALL cells were VCR sensitive and ASP resistant. The genes linked to discordant resistance included many that are involved with the function of ribosomes, the cell’s protein-making factories.

"This discordant resistance has not previously been described by other researchers," said Meyling H. Cheok, Ph.D., one of the postdoctoral fellows who did much of the work on this project. "The fact that it is associated with genes involved with protein synthesis gives us an important clue to the basis of this type of drug resistance."

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>