Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression pattern predicts multiple drug resistance, treatment failure in pediatric leukemia

19.04.2005


St. Jude Children’s Research Hospital discovery of genetic links to multi-drug resistance gives clinicians new insight into the cause of treatment failure and suggests targets for novel anti-leukemic drugs



The discovery of a specific pattern of gene expression linked to multiple-drug resistance of leukemic cells is giving researchers crucial information into why standard therapies fail to cure some children with acute lymphoblastic leukemia (ALL). This finding, from investigators at St. Jude Children’s Research Hospital, could lead to development of drugs that would overcome that resistance.

This new finding helps to explain why about 20 percent of children with ALL, the most common form of childhood cancer, are not cured with the same drug therapy that cures the remaining 80 percent of children with this disease. A report on the study that produced this new information appears in the April issue of Cancer Cell.


Drug resistance is a major cause of treatment failure, and the biochemical mechanisms responsible for de novo resistance are largely unknown. De novo resistance means that the resistance is "built into" the leukemic cells through a particular pattern of gene expression, rather than acquired through genetic mutation during treatment. Cross-resistance to multiple drugs suggests a poor prognosis and likely involves biochemical mechanisms that are different from those linked to single-drug resistance.

The investigators sought to identify the specific pattern of gene expression in ALL cells that is linked to de novo cross-resistance to four widely used antileukemic agents, and to determine how those genes affected treatment outcome.

"The identification of a particular genetic expression pattern linked to cross-resistance takes us a significant step forward in understanding why treatment fails to cure certain children who initially looked like good candidates for standard chemotherapy," said William E. Evans, Pharm.D., St. Jude director and member of St. Jude Pharmaceutical Sciences. "The results also give us crucial information into treatment failure that could help us design more effective treatments for the children our current treatment strategies fail to cure."

Evans is senior author of the Cancer Cell report.

The ALL cells used in the study were isolated from the bone marrow or the blood of patients with newly diagnosed disease who were being treated at St. Jude, the Dutch Childhood Oncology Group at the Sophia Children’s Hospital in the Netherlands or the German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia at the Children’s University Hospital in Hamburg, Germany.

Using pharmacogenomics techniques to assess gene expression levels in ALL cells, researchers identified 45 genes closely linked with leukemic cells’ ability to resist treatment by at least two of the most widely used antileukemic drugs. The drugs tested were prednisolone, vincristine, asparaginase and daunorubicin. The team also identified 139 genes that are closely linked to a previously unknown and unexpected type of drug resistance in which leukemic cells are resistant to asparaginase (ASP) but sensitive to vincristine (VCR). This "discordant" type of resistance (resistance to one drug and sensitivity to another) was associated with a poor response in children who had this pattern of gene expression.

Cross-resistant patients had significantly worse outcomes as a group. Among patients whose ALL cells were cross-resistant, only 53 percent had a five-year, relapse-free survival compared to 91 percent of those whose ALL cells were cross-sensitive to all the drugs.

Among patients whose ALL cells were ASP-sensitive plus VCR-resistant, the five-year, relapse-free survival rate was 93 percent, compared to 56 percent among patients whose ALL cells were VCR sensitive and ASP resistant. The genes linked to discordant resistance included many that are involved with the function of ribosomes, the cell’s protein-making factories.

"This discordant resistance has not previously been described by other researchers," said Meyling H. Cheok, Ph.D., one of the postdoctoral fellows who did much of the work on this project. "The fact that it is associated with genes involved with protein synthesis gives us an important clue to the basis of this type of drug resistance."

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>