Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression pattern predicts multiple drug resistance, treatment failure in pediatric leukemia

19.04.2005


St. Jude Children’s Research Hospital discovery of genetic links to multi-drug resistance gives clinicians new insight into the cause of treatment failure and suggests targets for novel anti-leukemic drugs



The discovery of a specific pattern of gene expression linked to multiple-drug resistance of leukemic cells is giving researchers crucial information into why standard therapies fail to cure some children with acute lymphoblastic leukemia (ALL). This finding, from investigators at St. Jude Children’s Research Hospital, could lead to development of drugs that would overcome that resistance.

This new finding helps to explain why about 20 percent of children with ALL, the most common form of childhood cancer, are not cured with the same drug therapy that cures the remaining 80 percent of children with this disease. A report on the study that produced this new information appears in the April issue of Cancer Cell.


Drug resistance is a major cause of treatment failure, and the biochemical mechanisms responsible for de novo resistance are largely unknown. De novo resistance means that the resistance is "built into" the leukemic cells through a particular pattern of gene expression, rather than acquired through genetic mutation during treatment. Cross-resistance to multiple drugs suggests a poor prognosis and likely involves biochemical mechanisms that are different from those linked to single-drug resistance.

The investigators sought to identify the specific pattern of gene expression in ALL cells that is linked to de novo cross-resistance to four widely used antileukemic agents, and to determine how those genes affected treatment outcome.

"The identification of a particular genetic expression pattern linked to cross-resistance takes us a significant step forward in understanding why treatment fails to cure certain children who initially looked like good candidates for standard chemotherapy," said William E. Evans, Pharm.D., St. Jude director and member of St. Jude Pharmaceutical Sciences. "The results also give us crucial information into treatment failure that could help us design more effective treatments for the children our current treatment strategies fail to cure."

Evans is senior author of the Cancer Cell report.

The ALL cells used in the study were isolated from the bone marrow or the blood of patients with newly diagnosed disease who were being treated at St. Jude, the Dutch Childhood Oncology Group at the Sophia Children’s Hospital in the Netherlands or the German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia at the Children’s University Hospital in Hamburg, Germany.

Using pharmacogenomics techniques to assess gene expression levels in ALL cells, researchers identified 45 genes closely linked with leukemic cells’ ability to resist treatment by at least two of the most widely used antileukemic drugs. The drugs tested were prednisolone, vincristine, asparaginase and daunorubicin. The team also identified 139 genes that are closely linked to a previously unknown and unexpected type of drug resistance in which leukemic cells are resistant to asparaginase (ASP) but sensitive to vincristine (VCR). This "discordant" type of resistance (resistance to one drug and sensitivity to another) was associated with a poor response in children who had this pattern of gene expression.

Cross-resistant patients had significantly worse outcomes as a group. Among patients whose ALL cells were cross-resistant, only 53 percent had a five-year, relapse-free survival compared to 91 percent of those whose ALL cells were cross-sensitive to all the drugs.

Among patients whose ALL cells were ASP-sensitive plus VCR-resistant, the five-year, relapse-free survival rate was 93 percent, compared to 56 percent among patients whose ALL cells were VCR sensitive and ASP resistant. The genes linked to discordant resistance included many that are involved with the function of ribosomes, the cell’s protein-making factories.

"This discordant resistance has not previously been described by other researchers," said Meyling H. Cheok, Ph.D., one of the postdoctoral fellows who did much of the work on this project. "The fact that it is associated with genes involved with protein synthesis gives us an important clue to the basis of this type of drug resistance."

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>