Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals How Materials Direct Cell Response

19.04.2005


The body treats implanted medical devices – including everything from titanium hip replacements and blood vessel grafts – as invaders.



Cells surround and attack foreign material, resulting in an inflammatory response. This unfriendly reaction prevents implants from integrating into the body and functioning as well as they could.

While implanted biomaterials can be designed with different surface chemistries and roughness to influence inflammatory responses, the process is not well understood. Now, researchers from the Georgia Institute of Technology have discovered how cells “sense” differences in biomaterial surface chemistry. These differences in communication between the cell and the biomaterial result in changes in cell behavior, according to findings published in the Proceedings of the National Academy of Sciences (PNAS).


In addition to explaining how biomaterials influence cells, the findings could be used to develop new classes of materials to improve device integration and function. For example, these findings could be used to direct responses in stem cells, controlling their differentiation into mature, functional cell types.

The research was lead by Andrés García, an associate professor in the Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience at Georgia Tech. Benjamin Keselowsky, a post doctoral fellow in Mechanical Engineering, and David Collard, an associate professor in the School of Chemistry and Biochemistry at Georgia Tech, also collaborated on the project.

“From a molecular perspective, we now have a better idea of how cells interact with materials and how materials can direct cell responses,” García said. “And now that we understand that, it may be possible to engineer novel, rationally-designed biomaterials that can control those interactions.”

Cells interact with biomaterials using specialized adhesion proteins. These adhesion proteins on the cell bind to target proteins adsorbed on the biomaterial surface. In addition to anchoring cells, these adhesion proteins trigger signals that control many cell functions, including growth and protein production. An important feature of these adhesion proteins is that they only recognize a small number of target proteins.

“That’s how the cell makes sense of a very complicated environment like the body,” García said.

García and his group showed that the biomaterial surface chemistry altered the types of adhesion proteins that cells used to adhere to the biomaterial. As the surface chemistry of the material changed, so did the types of adhesion receptors that the cells used for binding. These differences in the binding of adhesion proteins changed the signals in the cell and resulted in very different cellular responses.

“The idea is that different adhesion proteins do different things by triggering different signals,” García said. “By controlling which adhesion proteins the cell is using to bind to a material, we can control what the cell does and the quality of its interaction with the material.”

These investigators are now focusing on directing stem cells into specific cell types and determining whether these engineered biomaterials integrate better into the body.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>