Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals How Materials Direct Cell Response

19.04.2005


The body treats implanted medical devices – including everything from titanium hip replacements and blood vessel grafts – as invaders.



Cells surround and attack foreign material, resulting in an inflammatory response. This unfriendly reaction prevents implants from integrating into the body and functioning as well as they could.

While implanted biomaterials can be designed with different surface chemistries and roughness to influence inflammatory responses, the process is not well understood. Now, researchers from the Georgia Institute of Technology have discovered how cells “sense” differences in biomaterial surface chemistry. These differences in communication between the cell and the biomaterial result in changes in cell behavior, according to findings published in the Proceedings of the National Academy of Sciences (PNAS).


In addition to explaining how biomaterials influence cells, the findings could be used to develop new classes of materials to improve device integration and function. For example, these findings could be used to direct responses in stem cells, controlling their differentiation into mature, functional cell types.

The research was lead by Andrés García, an associate professor in the Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience at Georgia Tech. Benjamin Keselowsky, a post doctoral fellow in Mechanical Engineering, and David Collard, an associate professor in the School of Chemistry and Biochemistry at Georgia Tech, also collaborated on the project.

“From a molecular perspective, we now have a better idea of how cells interact with materials and how materials can direct cell responses,” García said. “And now that we understand that, it may be possible to engineer novel, rationally-designed biomaterials that can control those interactions.”

Cells interact with biomaterials using specialized adhesion proteins. These adhesion proteins on the cell bind to target proteins adsorbed on the biomaterial surface. In addition to anchoring cells, these adhesion proteins trigger signals that control many cell functions, including growth and protein production. An important feature of these adhesion proteins is that they only recognize a small number of target proteins.

“That’s how the cell makes sense of a very complicated environment like the body,” García said.

García and his group showed that the biomaterial surface chemistry altered the types of adhesion proteins that cells used to adhere to the biomaterial. As the surface chemistry of the material changed, so did the types of adhesion receptors that the cells used for binding. These differences in the binding of adhesion proteins changed the signals in the cell and resulted in very different cellular responses.

“The idea is that different adhesion proteins do different things by triggering different signals,” García said. “By controlling which adhesion proteins the cell is using to bind to a material, we can control what the cell does and the quality of its interaction with the material.”

These investigators are now focusing on directing stem cells into specific cell types and determining whether these engineered biomaterials integrate better into the body.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates
21.02.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>