Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals How Materials Direct Cell Response

19.04.2005


The body treats implanted medical devices – including everything from titanium hip replacements and blood vessel grafts – as invaders.



Cells surround and attack foreign material, resulting in an inflammatory response. This unfriendly reaction prevents implants from integrating into the body and functioning as well as they could.

While implanted biomaterials can be designed with different surface chemistries and roughness to influence inflammatory responses, the process is not well understood. Now, researchers from the Georgia Institute of Technology have discovered how cells “sense” differences in biomaterial surface chemistry. These differences in communication between the cell and the biomaterial result in changes in cell behavior, according to findings published in the Proceedings of the National Academy of Sciences (PNAS).


In addition to explaining how biomaterials influence cells, the findings could be used to develop new classes of materials to improve device integration and function. For example, these findings could be used to direct responses in stem cells, controlling their differentiation into mature, functional cell types.

The research was lead by Andrés García, an associate professor in the Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience at Georgia Tech. Benjamin Keselowsky, a post doctoral fellow in Mechanical Engineering, and David Collard, an associate professor in the School of Chemistry and Biochemistry at Georgia Tech, also collaborated on the project.

“From a molecular perspective, we now have a better idea of how cells interact with materials and how materials can direct cell responses,” García said. “And now that we understand that, it may be possible to engineer novel, rationally-designed biomaterials that can control those interactions.”

Cells interact with biomaterials using specialized adhesion proteins. These adhesion proteins on the cell bind to target proteins adsorbed on the biomaterial surface. In addition to anchoring cells, these adhesion proteins trigger signals that control many cell functions, including growth and protein production. An important feature of these adhesion proteins is that they only recognize a small number of target proteins.

“That’s how the cell makes sense of a very complicated environment like the body,” García said.

García and his group showed that the biomaterial surface chemistry altered the types of adhesion proteins that cells used to adhere to the biomaterial. As the surface chemistry of the material changed, so did the types of adhesion receptors that the cells used for binding. These differences in the binding of adhesion proteins changed the signals in the cell and resulted in very different cellular responses.

“The idea is that different adhesion proteins do different things by triggering different signals,” García said. “By controlling which adhesion proteins the cell is using to bind to a material, we can control what the cell does and the quality of its interaction with the material.”

These investigators are now focusing on directing stem cells into specific cell types and determining whether these engineered biomaterials integrate better into the body.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>