Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variant in gene associated with telomeres predicts longer survival of deadly brain tumor

19.04.2005


An exceptionally large study of patients with glioblastoma multiforme has found an association between a genetic variation and a doubling of survival rate - the strongest link ever established between genetic variation and outcome in this deadliest form of brain cancer, according to researchers at The University of Texas M. D. Anderson Cancer Center.



The study, presented at the annual meeting of the American Association of Cancer Research, found the differences in a common variant in a number of repeats (short or long) of the hTERT gene, which produces human telomerase.

This study of 301 patients, which the researchers believe is the largest to date of patients with glioblastoma multiforme, found that the 36 patients (about 11 percent) who had the "SS" variant genotype of hTERT survived an average of 25 months, compared to about 14 months for those who had either the "SL" or "LL" genotypes.


The findings are exciting, says the lead investigator, Melissa Bondy, Ph.D., a professor in the Department of Epidemiology, because they suggest new treatment directions for patients with a cancer that is both the most common glioma and the one offering the poorest hope of survival.

"It is a real advance because we have never seen any genotype that can stratify glioblastoma multiforme patients into different treatment outcome groups like this," says Bondy. "Now we need to verify the finding, study the mechanism, and see if there is a way that these results can be used either as a biomarker or to individualize treatment."

For example, if the SS variant genotype of hTERT is confirmed to have better response to chemotherapy and radiation treatment, then it is possible that these therapies will extend survival for patients with glioblastoma multiforme, she says.

Telomeres, the structures that cap the end of cellular chromosomes, have been linked to both the aging process and cancer development. Telomerase is an enzyme that helps regulate the length of telomeres, and in normal cells, it is not generally active past fetal development. Thus, telomeres shorten each time a cell divides, until they cannot protect chromosomes and the cell dies. But in cancer, it is believed that telomerase is activated and intervenes to keep telomeres from shortening, allowing for unlimited cell division.

The research group looked at genetic variation of hTERT because abnormal expression of the gene contributes to unregulated cell growth, and expression of the gene has been evaluated as one of the most common tumor markers in most primary tumors, says the study’s first author, Luo Wang, M.D., Ph.D., a research scientist in the Department of Epidemiology.

The mechanism why the SS variant genotype of hTERT showed better survival remains unknown. But some forms of hTERT may be less destructive than others because they may be expressed at a lower level, Wang says. For instance, the SS variant genotype is more likely than the SL or LL variant genotype to produce an antisense-like molecule that suppresses the expression of human telomerase, he says, and this modulation may enhance the effect of the chemotherapy and radiation treatment on the patients with the SS variant genotype.

Bondy says the association between the SS variant genotype and improved outcome held, even when differences in age, sex and the extent of surgery, chemotherapy and radiation were taken into account. "We have looked at a lot of different genes associated with cancer, such as DNA repair genes and p53, but this is the first time we have found a genotype that has such a large effect on clinical outcome."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Neutrons observe vitamin B6-dependent enzyme activity useful for drug development
17.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>