Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Variant in gene associated with telomeres predicts longer survival of deadly brain tumor


An exceptionally large study of patients with glioblastoma multiforme has found an association between a genetic variation and a doubling of survival rate - the strongest link ever established between genetic variation and outcome in this deadliest form of brain cancer, according to researchers at The University of Texas M. D. Anderson Cancer Center.

The study, presented at the annual meeting of the American Association of Cancer Research, found the differences in a common variant in a number of repeats (short or long) of the hTERT gene, which produces human telomerase.

This study of 301 patients, which the researchers believe is the largest to date of patients with glioblastoma multiforme, found that the 36 patients (about 11 percent) who had the "SS" variant genotype of hTERT survived an average of 25 months, compared to about 14 months for those who had either the "SL" or "LL" genotypes.

The findings are exciting, says the lead investigator, Melissa Bondy, Ph.D., a professor in the Department of Epidemiology, because they suggest new treatment directions for patients with a cancer that is both the most common glioma and the one offering the poorest hope of survival.

"It is a real advance because we have never seen any genotype that can stratify glioblastoma multiforme patients into different treatment outcome groups like this," says Bondy. "Now we need to verify the finding, study the mechanism, and see if there is a way that these results can be used either as a biomarker or to individualize treatment."

For example, if the SS variant genotype of hTERT is confirmed to have better response to chemotherapy and radiation treatment, then it is possible that these therapies will extend survival for patients with glioblastoma multiforme, she says.

Telomeres, the structures that cap the end of cellular chromosomes, have been linked to both the aging process and cancer development. Telomerase is an enzyme that helps regulate the length of telomeres, and in normal cells, it is not generally active past fetal development. Thus, telomeres shorten each time a cell divides, until they cannot protect chromosomes and the cell dies. But in cancer, it is believed that telomerase is activated and intervenes to keep telomeres from shortening, allowing for unlimited cell division.

The research group looked at genetic variation of hTERT because abnormal expression of the gene contributes to unregulated cell growth, and expression of the gene has been evaluated as one of the most common tumor markers in most primary tumors, says the study’s first author, Luo Wang, M.D., Ph.D., a research scientist in the Department of Epidemiology.

The mechanism why the SS variant genotype of hTERT showed better survival remains unknown. But some forms of hTERT may be less destructive than others because they may be expressed at a lower level, Wang says. For instance, the SS variant genotype is more likely than the SL or LL variant genotype to produce an antisense-like molecule that suppresses the expression of human telomerase, he says, and this modulation may enhance the effect of the chemotherapy and radiation treatment on the patients with the SS variant genotype.

Bondy says the association between the SS variant genotype and improved outcome held, even when differences in age, sex and the extent of surgery, chemotherapy and radiation were taken into account. "We have looked at a lot of different genes associated with cancer, such as DNA repair genes and p53, but this is the first time we have found a genotype that has such a large effect on clinical outcome."

Nancy Jensen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>