Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSAID drug protects against intestinal tumors in mice, despite poor diet and gene losses

19.04.2005


In mouse models of intestinal cancer, use of an anti-inflammatory drug eliminated all of the cancer-causing risks produced by a high-fat Western-style diet - even when several genetic brakes to cancer formation were missing in the animals, say researchers from the Albert Einstein Cancer Center.



The investigators, who presented their findings at the 96th Annual Meeting of the American Association for Cancer Research, say that while the results do not yet have relevance for preventing human colon cancer, they do illustrate the interplay between genes and common nutritional and medicinal agents in development of cancer in the intestines.

The drug they tested, sulindac, was a highly effective chemoprevention agent, the researchers say, because it worked to induce expression of the p21 gene, which they found put a firm stop on tumor formation even though the mice were missing two key tumor suppressor genes (p27 and APC) and were fed a diet high in fat and low in calcium and vitamin D.


"It appears that p21 activation through sulindac offers protection against both a lack of tumor suppressor genes as well as poor diet," says the lead author, WanCai Yang, M.D., an assistant professor of medicine. While the drug is a NSAID (non-steroidal anti-inflammatory drug) and a COX-2 inhibitor, Yang believes its chemoprotective effects come via novel pathways that affect p21 expression.

The study builds upon a body of research conducted by Yang and Leonard Augenlicht, Ph.D., at the Albert Einstein Cancer Center that has used knockout mouse models to explore the role of genes and diet, including the finding that inactivation of the p21 gene accelerated tumor formation and that loss of this gene eliminated the ability of sulindac to inhibit tumor formation. Their earlier studies also showed that mice that lacked p27, another tumor suppressor gene, had a higher risk of developing tumors in both the small and large intestine.

Now, however, they have linked that risk to a high-risk diet. In the first part of the study, they found that mice lacking a p27 gene that were fed with a corn-oil rich diet (labeled AIN-76A, also low in calcium and vitamin D) formed tumors whereas knock-out mice fed with their regular chow (which was enriched with soybean oil) did not. And p27 knock-out mice given a Western diet, full of fat and lacking calcium and vitamin D, formed the most number of tumors.

The researchers then looked at the role that diet plays when expression of two tumor suppressor genes is reduced. The researchers mated mice that had only one APC gene to p27 positive or negative mice, producing variants with no p27 genes or one or two. The APC gene is responsible for an inherited colorectal cancer condition known as FAP (familial adenomatous polyposis), in which patients develop hundreds of potentially precancerous polyps.

They found that on the AIN-76A diet, loss of one APC gene but retention of the "wild-type" (normal) p27 genes was enough to induce tumor formation in 22 percent of the mice, but that number increased to 72 percent when one allele of the p27 gene was lost, and 93 percent when both alleles of the p27 gene were lost. But all of the knock-out mice variants developed tumors in both their small and large intestines when fed a Western-style diet.

"This showed that the diet overwhelmed any protective effect the p27 genes conferred," says Yang. "It not only increased tumor size and number, but also pushed the cancer into an invasive state."

Finally, they examined what happened when the knock-out mice were fed a Western diet enhanced with sulindac, an agent they had previously found help suppress tumor formation. To their surprise, none of the knock-out mice developed cancer.

"To us this means that as long as an animal can activate the p21 gene, this can have an overriding affect on suppressing tumor formation caused by either loss of other tumor suppressor genes or diet," says Yang. "We are testing this concept further, including exactly how the p21 gene gets activated."

Warren R. Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>