Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melbourne researchers develop safer and more effective "aspirin"

19.04.2005


Monash University researchers and staff of the Melbourne-based biotechnology company Cerylid Biosciences Ltd, have discovered and developed a new class of anti-clotting drugs that appears to be more effective than aspirin at preventing disease-causing blood clots and has fewer side effects.

Heart attack and stroke are the leading cause of death and disability in the western world and result in the death of about 50,000 Australians each year.

They are typically caused by blood clots that block blood flow to the heart or brain. Patients (except those stroke patients whose illness is caused by bleeding into the brain) are usually treated with aspirin, but this can increase the risk of bleeding and lead to life-threatening haemorrhages.



Associate Professor Shaun Jackson (pictured), from the Australian Centre for Blood Diseases at Monash, said this new class of drugs, called PI 3-kinase inhibitors, may prove to be vitally important in treating heart attack and stroke patients by stopping formation of the problem-causing blood clots without causing excessive bleeding.

"Aspirin is the most widely used anti-clotting drug , however it is only effective at preventing fatal heart attack and stroke for about one in four patients," Dr Jackson said. "There is a major need for safer and more effective anti-clotting drugs. The ’holy grail’ in the field is a drug that prevents disease-causing clots whilst not increasing the risk of bleeding."

Animal studies have shown that the drugs, developed by Dr Jackson and colleagues at the Department of Pharmacology at the University of Melbourne, Cerylid Biosciences and the University College of London, do not increase the risk of bleeding.

Phase I trials in human volunteers have also yielded promising results.

The drugs were developed after Dr Jackson and colleagues identified the mechanism that promotes the formation of pathological blood clots (clots that lead to heart attack or stroke) and how it differed from the mechanisms involved in normal blood clotting.

Their research is published today in the international journal Nature Medicine.

Dr Jackie Fairley, CEO of Cerylid Biosciences, said it was too early to say if the drugs would replace aspirin in treating heart attack and stroke but that at this stage in their development, they had enormous potential.

Commercial rights to these anti-thrombotic compounds are held by Cerylid Biosciences. The company, which holds a number of patents over the compounds and associated technology, will take its second-generation PI3-kinase inhibitor, CBL1309, into clinical trials later this year.

For more information contact: Monash University -- Ms Penny Fannin on +61 3 9905 5828 or 0417 125 700. Cerylid Biosciences -- Ms Rebecca Christie, Buchan Consulting, 0417 382 391

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>