Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The biggest family tree ever

18.04.2005


Ever wondered where your family’s ancestors roamed 60,000 years ago?

Now you can find out by participating in the world’s most ambitious project tracing the genetic and migratory history of the human race. Members of the general public from all over the world can supply their DNA to the Genographic Project, and scientists at The University of Arizona in Tucson will do the genetic analysis. The public DNA sampling is part of a larger undertaking to unravel the origins and migratory history of mankind thousands of years back in time by analyzing genetic samples from at least 200,000 people all over the world.

National Geographic and IBM are embarking on the Genographic Project, a landmark, five-year global study of human migratory history. The project will reveal how our ancestors diversified into different groups and what routes they took as they spread out over the Earth.



One major aspect of the project is doing field research and collecting DNA samples from indigenous peoples throughout the world. The field component of the project is underwritten by the Waitt Family Foundation.

UA is participating in a different aspect of the project, analyzing samples submitted by the public. Individuals can become part of the project and learn about their own ancestors by buying a participation kit and submitting their DNA sample.

"As more people provide their genetic information to the project, researchers will be able to fill in the local details of how people migrated across the Earth," said Michael Cusanovich, director of UA’s Arizona Research Laboratories. Cusanovich added that this is the first time members of the general public can join a genetics project of this scale.

Michael F. Hammer, a research scientist at UA’s Arizona Research Laboratories and UA’s BIO5 Institute, will analyze the general public’s DNA samples. His team will trace people’s lineages using markers encoded into DNA. The DNA samples will be analyzed in UA’s Genomic Analysis and Technology Core (GATC), a facility providing genomic research services to public and private research institutions. GATC has the capacity to process up to 10,000 samples each month. The actual work load will depend on how many people join in the multi-national effort.

"For the first time people all around the world can learn about their genetic ancestry," said Hammer, a population geneticist. One of his specialties is deciphering prehistoric human relationships using genetics.

By comparing the genetic markers, the UA scientists’ work will unveil new aspects of people’s family trees, ones that are almost impossible to discover through traditional genealogical methods. In contrast to written historical records that can be lost or oral histories that can fall into disuse, the information stored in people’s genes persists.

Cusanovich had his own DNA analyzed, which helped him trace his family to a time "when the crusaders were rolling through the Middle East." Many people conduct genealogical research, said Cusanovich, a UA professor of biochemistry and molecular biophysics and a professor in BIO5. "If you ask around here, you find that every tenth person is building a little family tree at home. They go to all the records and they’re using Web sites to trace back their history."

The UA scientists will analyze a tiny fraction of the participants’ genetic material: the y-chromosome, which is passed on from father to son, and mitochondrial DNA, which is passed on from mothers to their sons and daughters. This enables the researchers to decipher the characteristic genetic markers of both parental lineages.

UA is collaborating in a joint venture with Family Tree DNA, a company specializing in tracing ancestry using genetics. The company has been contracted to process the samples in the Genographic Project. Hammer is a consultant for and holds stock in the company. UA will not generate profits from the project.

People who wish to participate in the Genographic Project can buy a kit at $99.95 (plus shipping and handling) from National Geographic. The kit contains a swab to collect cells from the inside of the mouth and a tube to ship the sample to Family Tree DNA. The company then registers the sample and sends it to The University of Arizona for analysis. All samples are analyzed anonymously to protect individuals’ privacy, and the information will be used only for the project. Participants can obtain their personal results on a Web site.

Participants who want to find out about a whole new set of relatives can do so by disclosing their names to Family Tree DNA and then plan their biggest family reunion ever.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>