Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A kiss that binds

18.04.2005


Understanding the interaction of Fragile X mental retardation protein and kissing complex RNAs



Fragile X syndrome is the most common inherited form of mental retardation, affecting approximately 1 in 3600 males and 1 in 4000-6000 females. Fragile X syndrome results from loss of expression of the Fragile X mental retardation protein (FMRP), the product of the FMR1 gene. Now, Drs. Robert and Jennifer Darnell and colleagues, from The Rockefeller University, report the uncovering of a new interaction between FMRP and messenger RNAs (mRNAs) containing a tertiary RNA structure termed a "kissing complex".
Their studies, published in the April 15th issue of Genes & Development, provide a new direction for efforts to understand how the loss of FMRP function leads to the complex behavioral and cognitive defects characteristic of Fragile X syndrome.

While the importance of identifying a function for FMRP has been clear for some time, what this function actually is has continued to evade researchers. FMRP is a protein characterized by the presence of three RNA binding domains: two tandem KH-type RNA binding domains and an RGG box. Scientists have focused on the identification of FMRP RNA ligands in an effort to understand FMRP function. This effort is particularly meaningful since FMRP is believed to regulate mRNA translation in the brain, and identifying the mRNA targets of this regulation would be a huge step in understanding how loss of this protein results in the varied and complex phenotypes of Fragile X syndrome.



In most Fragile X patients, loss of FMRP is due to silencing of FMR1 resulting from the unusual amplification of a CGG repeat (over 200 copies in affected patients versus less than 60 copies in unaffected individuals) that leads to hypermethylation of FMR1 and shut down of transcription of the gene. However, Fragile X patients expressing mutations or deletions within the FMR1 gene have also been described, including a severely affected patient harboring a missense mutation that resulted in a one amino acid change, isoleucine at position 304 for asparagine, in one of the KH domains of FMRP, KH2.

Dr. Darnell and colleagues focused on understanding how this specific mutation leads to loss of FMRP function. They first screened an RNA library to identify what RNA motif is recognized by the KH2 domain. They found that the KH2 domain of FMRP recognizes a loop-loop pseudoknot, or "kissing complex" structure in the RNA, and that this recognition is abrogated by the isoleucine to asparagine mutation. Notably, they show that the association of FMRP with the translation machinery (in brain polyribosomes) can be competed out with kissing complex RNA, an important finding since previous biochemical studies have reported altered polyribosome distribution of mRNAs in Fragile X patients.

These findings will redirect the search for the RNA targets of FMRP whose misregulation is responsible for the disease, to those containing kissing complex motifs.

Though much remains to be understood in the biology leading to Fragile X syndrome and the function of FMRP, Dr. Darnell is confident that "these findings may provide a crucial link between the association of FMRP in brain polyribosomes, its proposed role in regulation mRNA translation, and neurologic dysfunction in the Fragile X syndrome".

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>