Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that chocolate compound stops cancer cell cycle in lab experiments

18.04.2005


Researchers from the Lombardi Comprehensive Cancer Center at Georgetown University have shown how an ingredient found in chocolate seems to exert its anti-cancer properties -- findings that might be used one day to design novel cancer treatments. The study, published in the April issue of the journal Molecular Cancer Therapeutics, explains how pentameric procyanidin (pentamer), a natural compound found in cocoa, deactivates a number of proteins that likely work in concert to push a cancer cell to continually divide.



"There are all kinds of chemicals in the food we eat that potentially have effects on cancer cells, and a natural compound in chocolate may be one," said the lead author, Robert B. Dickson, Ph.D., professor of oncology. "We need to slowly develop evidence about the selectivity of these compounds to cancer, learn how they work, and sort out any issues of toxicity."

Chocolate, like many other foods, is the source of many possible anti-cancer compounds, but Dickson stresses that this research, which is part of a series of studies conducted at Georgetown on the chocolate-cancer connection, does not mean that people who eat chocolate will either reduce their cancer risks or treat a current case. Although the study was conducted in breast cancer cell cultures, the finding could potentially apply to other cancers, Dickson said. (The studies are being funded by MARS Incorporated.)


Chocolate is made from the beans of cacao trees, and, like some other plants, are rich in natural antioxidants known as flavonoids. These antioxidants may protect cells from the damage caused by unstable molecules known as free radicals, which are thought to contribute to both heart disease and cancer development. The primary family of flavonoids contributing to the antioxidant benefit in chocolate is the procyanidins, and of the various types of procyanidins, pentamer seem to be strongest, according to a number of studies.

Given this, the Georgetown researchers looked at what happened when they used a purified preparation of pentamer on a variety of breast cancer cells, compared to treatment on normal breast cells. They used a variety of tests to find and identify proteins that were deactivated in the cancer cells.

What they located were two well known tumor suppressor genes as well as two other proteins known to be involved in regulating the "cell cycle" -- the progression of a cell from a state of being "quiet" into division and growth. They specifically found that the breast cancer cells stopped dividing when treated with pentamer and that all four proteins were inactivated. Furthermore, expression of one of the genes was reduced.

Dickson notes that "the novel aspect here is that a pattern of several regulatory proteins are jointly deactivated, probably greatly enhancing the inhibitory effect compared to targeting any one of the proteins singly. That is also why the compound seems to work on cancer cells, irrespective of whether any of these single genes are mutated, which often happens in cancer cells."

He adds that the researchers don’t know why pentamer deactivates these proteins simultaneously, stopping the cell cycle. "We don’t know at a fundamental level whether a master switch that triggers cell growth is turned off, or whether the chocolate compound exerts multiple independent effects on diverse cellular processes. That will be the subject of future studies here."

Co-authors of the study from Georgetown University are first author Danica Ramijak, Nicole Thompson, and Linda Metheny-Barlow. Leo Romanczyk from Masterfoods, USA, and other collaborators also contributed.

The full text of the study is available at http://gumc.georgetown.edu/communications/releases/release.cfm?ObjectID=4477.

Amy DeMaria | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>