Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that chocolate compound stops cancer cell cycle in lab experiments

18.04.2005


Researchers from the Lombardi Comprehensive Cancer Center at Georgetown University have shown how an ingredient found in chocolate seems to exert its anti-cancer properties -- findings that might be used one day to design novel cancer treatments. The study, published in the April issue of the journal Molecular Cancer Therapeutics, explains how pentameric procyanidin (pentamer), a natural compound found in cocoa, deactivates a number of proteins that likely work in concert to push a cancer cell to continually divide.



"There are all kinds of chemicals in the food we eat that potentially have effects on cancer cells, and a natural compound in chocolate may be one," said the lead author, Robert B. Dickson, Ph.D., professor of oncology. "We need to slowly develop evidence about the selectivity of these compounds to cancer, learn how they work, and sort out any issues of toxicity."

Chocolate, like many other foods, is the source of many possible anti-cancer compounds, but Dickson stresses that this research, which is part of a series of studies conducted at Georgetown on the chocolate-cancer connection, does not mean that people who eat chocolate will either reduce their cancer risks or treat a current case. Although the study was conducted in breast cancer cell cultures, the finding could potentially apply to other cancers, Dickson said. (The studies are being funded by MARS Incorporated.)


Chocolate is made from the beans of cacao trees, and, like some other plants, are rich in natural antioxidants known as flavonoids. These antioxidants may protect cells from the damage caused by unstable molecules known as free radicals, which are thought to contribute to both heart disease and cancer development. The primary family of flavonoids contributing to the antioxidant benefit in chocolate is the procyanidins, and of the various types of procyanidins, pentamer seem to be strongest, according to a number of studies.

Given this, the Georgetown researchers looked at what happened when they used a purified preparation of pentamer on a variety of breast cancer cells, compared to treatment on normal breast cells. They used a variety of tests to find and identify proteins that were deactivated in the cancer cells.

What they located were two well known tumor suppressor genes as well as two other proteins known to be involved in regulating the "cell cycle" -- the progression of a cell from a state of being "quiet" into division and growth. They specifically found that the breast cancer cells stopped dividing when treated with pentamer and that all four proteins were inactivated. Furthermore, expression of one of the genes was reduced.

Dickson notes that "the novel aspect here is that a pattern of several regulatory proteins are jointly deactivated, probably greatly enhancing the inhibitory effect compared to targeting any one of the proteins singly. That is also why the compound seems to work on cancer cells, irrespective of whether any of these single genes are mutated, which often happens in cancer cells."

He adds that the researchers don’t know why pentamer deactivates these proteins simultaneously, stopping the cell cycle. "We don’t know at a fundamental level whether a master switch that triggers cell growth is turned off, or whether the chocolate compound exerts multiple independent effects on diverse cellular processes. That will be the subject of future studies here."

Co-authors of the study from Georgetown University are first author Danica Ramijak, Nicole Thompson, and Linda Metheny-Barlow. Leo Romanczyk from Masterfoods, USA, and other collaborators also contributed.

The full text of the study is available at http://gumc.georgetown.edu/communications/releases/release.cfm?ObjectID=4477.

Amy DeMaria | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>