Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern’s cancer genetics program finds gene variants that greatly increase breast cancer risk

15.04.2005


Decreased activity within the Transforming Growth Factor Beta (TGF-beta) pathway is associated with increased breast cancer risk, according to a study published by researchers at Northwestern Memorial Hospital and Northwestern University’s Robert H. Lurie Comprehensive Cancer Center in today’s Cancer Research journal. This is the first study aimed at determining whether various combinations of two naturally-occurring variants of the TGF-beta pathway may predict breast cancer risk. It is also the first study assessing a cancer-related pathway by means of two functionally-relevant variants.



Blood tests were performed on 660 patients with breast cancer and 880 healthy females for two TGF-beta variants: TGFBR1*6A and TGFB1 T29C. "Our study shows that TGFBR1*6A is associated with a 120 percent increased risk of breast cancer among women older than 50," says study author Boris Pasche, MD, PhD, FACP, director of Northwestern’s Cancer Genetics Program and assistant professor of Medicine at Northwestern University’s Feinberg School of Medicine. "Importantly, the results show that women with the lowest levels of TGF-beta activity have a 69 percent higher risk of breast cancer than women with the highest levels of TGF-beta activity as predicted by the combination of the two variants TGFBR1*6A and TGFB1 T29C. This finding is promising as it may eventually help us predict breast cancer risk in a large subset of the population. Indeed, breast cancer risk may be predicted in 30 percent of women through assessment of the TGFBR1*6A and TGFB1 T29C variants."

Mutated genes like TGFBR1*6A and the better-known cancer susceptibility genes BRCA1 and BRCA2, alter cells in a way that causes them either to grow faster or become cancerous. Dr. Pasche says while BRCA1 and BRCA2 genes have been implicated in an estimated 3 to 7 percent of all breast and ovarian cancer cases, studying TGFBR1*6A is important because it is a far more common gene as one in every eight individual carries at least one copy of this gene. The BRCA1 and BRCA2 genes are found only in one of every 400 to 800 people. The impact of TGFBR1*6A is shown by the fact that in 2005 more than 14,000 new cases of breast cancers in the US alone may be attributable to TGFBR1*6A.


"Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Dr. Pasche. "When inherited, the TGFBR1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."

Northwestern researchers collaborated with researchers from Memorial Sloan-Kettering Cancer Center, Columbia University and New York University in New York. All of the study participants were seen at Memorial Sloan-Kettering. Currently, Northwestern Memorial and Memorial Sloan-Kettering Cancer Center in New York are the only medical centers in the country performing clinical studies of the TGFBR1*6A gene.

"In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Dr. Pasche. Northwestern’s Cancer Genetics Program is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2. "However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast cancer."

Amanda Widtfeldt | EurekAlert!
Further information:
http://www.nmh.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>