Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Northwestern’s cancer genetics program finds gene variants that greatly increase breast cancer risk


Decreased activity within the Transforming Growth Factor Beta (TGF-beta) pathway is associated with increased breast cancer risk, according to a study published by researchers at Northwestern Memorial Hospital and Northwestern University’s Robert H. Lurie Comprehensive Cancer Center in today’s Cancer Research journal. This is the first study aimed at determining whether various combinations of two naturally-occurring variants of the TGF-beta pathway may predict breast cancer risk. It is also the first study assessing a cancer-related pathway by means of two functionally-relevant variants.

Blood tests were performed on 660 patients with breast cancer and 880 healthy females for two TGF-beta variants: TGFBR1*6A and TGFB1 T29C. "Our study shows that TGFBR1*6A is associated with a 120 percent increased risk of breast cancer among women older than 50," says study author Boris Pasche, MD, PhD, FACP, director of Northwestern’s Cancer Genetics Program and assistant professor of Medicine at Northwestern University’s Feinberg School of Medicine. "Importantly, the results show that women with the lowest levels of TGF-beta activity have a 69 percent higher risk of breast cancer than women with the highest levels of TGF-beta activity as predicted by the combination of the two variants TGFBR1*6A and TGFB1 T29C. This finding is promising as it may eventually help us predict breast cancer risk in a large subset of the population. Indeed, breast cancer risk may be predicted in 30 percent of women through assessment of the TGFBR1*6A and TGFB1 T29C variants."

Mutated genes like TGFBR1*6A and the better-known cancer susceptibility genes BRCA1 and BRCA2, alter cells in a way that causes them either to grow faster or become cancerous. Dr. Pasche says while BRCA1 and BRCA2 genes have been implicated in an estimated 3 to 7 percent of all breast and ovarian cancer cases, studying TGFBR1*6A is important because it is a far more common gene as one in every eight individual carries at least one copy of this gene. The BRCA1 and BRCA2 genes are found only in one of every 400 to 800 people. The impact of TGFBR1*6A is shown by the fact that in 2005 more than 14,000 new cases of breast cancers in the US alone may be attributable to TGFBR1*6A.

"Most cases of breast, ovarian and colon cancers are caused by damage to the genes that builds up over a lifetime, but some people are born with a high risk of the disease," explains Dr. Pasche. "When inherited, the TGFBR1*6A gene makes people susceptible to having certain cells grow and divide uncontrollably, which may contribute to cancer development."

Northwestern researchers collaborated with researchers from Memorial Sloan-Kettering Cancer Center, Columbia University and New York University in New York. All of the study participants were seen at Memorial Sloan-Kettering. Currently, Northwestern Memorial and Memorial Sloan-Kettering Cancer Center in New York are the only medical centers in the country performing clinical studies of the TGFBR1*6A gene.

"In the near future, it will be commonplace for people to know what genes make them more susceptible to cancer, and we’ll have many more options for preventing those cancers," says Dr. Pasche. Northwestern’s Cancer Genetics Program is a comprehensive cancer genetics program that provides cancer predictive gene testing and genetic counseling. TGFBR1*6A testing is currently only offered at Northwestern as part of a research protocol at the Cancer Genetics Program, but Dr. Pasche predicts that testing for this gene will enter the mainstream of genetic testing in the near future. Virginia Kaklamani M.D., an oncologist at Northwestern Memorial Hospital and assistant professor of medicine at the Feinberg School of Medicine, is the first author of the study. She adds, "The testing of TGFBR1*6A is not ready for primetime yet. We still have to understand its role in relation with other genes that we commonly test for, such as BRCA1 and BRCA2. "However, in the foreseeable future, we may be able to identify high-risk women more precisely because of the TGFBR1*6A mutation and prevent many cases of breast cancer."

Amanda Widtfeldt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>