Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover how Ebola virus infects cells


Finding could lead to treatments for viral hemorrhagic fevers

Ebola virus reproduction in laboratory-grown cells is severely hampered by enzyme-inhibiting chemicals, and these chemicals deserve further study as possible treatments for Ebola virus infections in humans, report scientists supported in part by the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health (NIH).

The researchers, whose paper is published online today in Science Express, identified two cellular enzymes Ebola virus must have to reproduce. When those enzymes are blocked, the virus loses most of its infectivity, the scientists found.

Ebola virus, like the Marburg virus now alarming Angola, is a filovirus, a family of viruses that cause severe and frequently fatal hemorrhagic fevers. "Finding medical countermeasures for viral hemorrhagic fevers is a global public health priority because not only do these diseases occur naturally but they also have the potential to be unleashed by bioterrorists," says NIH Director Elias A. Zerhouni, M.D.

"This new research sheds light on the mechanism Ebola virus uses to enter cells," notes NIAID Director Anthony S. Fauci, M.D. "These findings raise the possibility of a broad-spectrum antiviral therapy that could be effective against multiple hemorrhagic fever viruses."

Senior author James M. Cunningham, M.D., of Brigham and Women’s Hospital and Harvard Medical School in Boston, and his colleagues discovered two cellular enzymes that the Ebola virus co-opts and uses to cut up one of the virus’ surface proteins. Once this protein is snipped apart, the virus is free to begin multiplying. The scientists applied broad-spectrum enzyme inhibitors to mammalian cells before exposing them to Ebola virus. When one specific cellular enzyme, cathepsin B, was inhibited, the infectivity of Ebola virus dropped to near zero. An accessory role is played by another cellular enzyme, cathepsin L, the scientists determined.

Inhibitors of cathepsins are already under clinical development as anti-cancer drugs. The authors write, "Further investigation of the antiviral efficacy of [enzyme] inhibitors may…be warranted. The wealth of existing knowledge regarding the design and in vivo pharmacology of these inhibitors may facilitate development of an anti-Ebola-virus therapy."

The work was done in collaboration with Nancy J. Sullivan, Ph.D., of NIAID’s Vaccine Research Center.

The paper’s lead author, Kartik Chandran, Ph.D., of Brigham and Women’s Hospital and Harvard Medical School, is supported by a career development award from the NIAID Regional Centers of Excellence for Biodefense and Emerging Infectious Diseases Research (RCE) program. In 2003, NIAID funded the establishment of eight RCEs nationwide. The RCE program supports interdisciplinary research aimed at new and improved therapies, vaccines, diagnostics and other tools to protect against the threat of bioterrorism and other emerging and re-emerging diseases.

Anne A. Oplinger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>