Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men’s (and women’s) contraceptives

15.04.2005


Study of unique reproductive-cell protein in mice could lead to new contraceptives for women and men



Mice lacking a special protein found only in germ-line cells results in infertility in both males and females, according to a new study from researchers at the University of Pennsylvania School of Medicine. Norman Hecht, PhD, Professor of Human Reproduction in Penn’s Center for Research in Reproduction and Women’s Health, and colleagues say that these investigations point the way to a new type of contraceptive for both men and women. They report their findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

"Not many proteins are expressed in both male and female germ lines that are specific only to the germ line," says Hecht. Germ line refers to the group of cells that give rise to either sperm or eggs in animals, as opposed to all other cell types, which are called somatic cells. "There are many proteins whose deletion will cause male infertility, and others for creating female infertility, but not many that will lead to both male and female infertility without affecting the somatic cells."


Animals deficient in the protein – called MSY2 – are infertile, but are otherwise healthy and completely normal. Male mice produce no functional sperm, and females show early loss of eggs and defects in ovulation.

The MSY2 protein is part of a family of proteins, called Y-box proteins, that are present in most organisms, ranging from bacteria to humans. In the nuclei of developing germ cells, MSY2 enhances synthesis of a select group of messenger RNA (mRNA) molecules and transports them from the nucleus into the cytoplasm. There, MSY2 proteins stabilize the mRNAs, which are used to make new proteins. Many of these proteins are critical for the production of normal sperm and also are unique to germ cells.

"When trying to develop a new contraceptive, it’s hard because we need to identify a target that’s specific to the germ cells," says Hecht. "Clearly, if we inactivate the function of a protein with a small inhibitory molecule, it can’t be a protein also active in such somatic tissues as brain, heart, liver, and so forth, only in the reproductive cells we want to target." Investigating germ cell molecules for contraception is also desirable because it frequently allows reversibility.

Hecht and colleagues have been proposing this scheme for the last several years, but how does the absence of the MSY2 protein result in male and female infertility? "We don’t know the complete mechanism yet, but it may be preventing the stabilization of specific messenger RNAs that need to be used at specific times as germ cells differentiate into mature sperm and eggs," explains Hecht. "An equally likely possibility is that the absence of MSY2 disrupts the timing of how specific mRNAs are used during germ cell differentiation. As cells become mature sperm, there’s a precise order of synthesis of many essential proteins needed to create functional gametes. We think the absence of the MSY2 protein causes problems in the timing of sperm or egg development. We’re working hard on understanding this mechanism."

A similar human equivalent of MSY2, Contrin, has been identified by the research group and their studies indicate it is also a germ cell-specific protein. Using MSY2 as a mouse model, Hecht and colleagues hope that Contrin can be developed as a new non-hormonal target for human contraception.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>