Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men’s (and women’s) contraceptives

15.04.2005


Study of unique reproductive-cell protein in mice could lead to new contraceptives for women and men



Mice lacking a special protein found only in germ-line cells results in infertility in both males and females, according to a new study from researchers at the University of Pennsylvania School of Medicine. Norman Hecht, PhD, Professor of Human Reproduction in Penn’s Center for Research in Reproduction and Women’s Health, and colleagues say that these investigations point the way to a new type of contraceptive for both men and women. They report their findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

"Not many proteins are expressed in both male and female germ lines that are specific only to the germ line," says Hecht. Germ line refers to the group of cells that give rise to either sperm or eggs in animals, as opposed to all other cell types, which are called somatic cells. "There are many proteins whose deletion will cause male infertility, and others for creating female infertility, but not many that will lead to both male and female infertility without affecting the somatic cells."


Animals deficient in the protein – called MSY2 – are infertile, but are otherwise healthy and completely normal. Male mice produce no functional sperm, and females show early loss of eggs and defects in ovulation.

The MSY2 protein is part of a family of proteins, called Y-box proteins, that are present in most organisms, ranging from bacteria to humans. In the nuclei of developing germ cells, MSY2 enhances synthesis of a select group of messenger RNA (mRNA) molecules and transports them from the nucleus into the cytoplasm. There, MSY2 proteins stabilize the mRNAs, which are used to make new proteins. Many of these proteins are critical for the production of normal sperm and also are unique to germ cells.

"When trying to develop a new contraceptive, it’s hard because we need to identify a target that’s specific to the germ cells," says Hecht. "Clearly, if we inactivate the function of a protein with a small inhibitory molecule, it can’t be a protein also active in such somatic tissues as brain, heart, liver, and so forth, only in the reproductive cells we want to target." Investigating germ cell molecules for contraception is also desirable because it frequently allows reversibility.

Hecht and colleagues have been proposing this scheme for the last several years, but how does the absence of the MSY2 protein result in male and female infertility? "We don’t know the complete mechanism yet, but it may be preventing the stabilization of specific messenger RNAs that need to be used at specific times as germ cells differentiate into mature sperm and eggs," explains Hecht. "An equally likely possibility is that the absence of MSY2 disrupts the timing of how specific mRNAs are used during germ cell differentiation. As cells become mature sperm, there’s a precise order of synthesis of many essential proteins needed to create functional gametes. We think the absence of the MSY2 protein causes problems in the timing of sperm or egg development. We’re working hard on understanding this mechanism."

A similar human equivalent of MSY2, Contrin, has been identified by the research group and their studies indicate it is also a germ cell-specific protein. Using MSY2 as a mouse model, Hecht and colleagues hope that Contrin can be developed as a new non-hormonal target for human contraception.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>