Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men’s (and women’s) contraceptives

15.04.2005


Study of unique reproductive-cell protein in mice could lead to new contraceptives for women and men



Mice lacking a special protein found only in germ-line cells results in infertility in both males and females, according to a new study from researchers at the University of Pennsylvania School of Medicine. Norman Hecht, PhD, Professor of Human Reproduction in Penn’s Center for Research in Reproduction and Women’s Health, and colleagues say that these investigations point the way to a new type of contraceptive for both men and women. They report their findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

"Not many proteins are expressed in both male and female germ lines that are specific only to the germ line," says Hecht. Germ line refers to the group of cells that give rise to either sperm or eggs in animals, as opposed to all other cell types, which are called somatic cells. "There are many proteins whose deletion will cause male infertility, and others for creating female infertility, but not many that will lead to both male and female infertility without affecting the somatic cells."


Animals deficient in the protein – called MSY2 – are infertile, but are otherwise healthy and completely normal. Male mice produce no functional sperm, and females show early loss of eggs and defects in ovulation.

The MSY2 protein is part of a family of proteins, called Y-box proteins, that are present in most organisms, ranging from bacteria to humans. In the nuclei of developing germ cells, MSY2 enhances synthesis of a select group of messenger RNA (mRNA) molecules and transports them from the nucleus into the cytoplasm. There, MSY2 proteins stabilize the mRNAs, which are used to make new proteins. Many of these proteins are critical for the production of normal sperm and also are unique to germ cells.

"When trying to develop a new contraceptive, it’s hard because we need to identify a target that’s specific to the germ cells," says Hecht. "Clearly, if we inactivate the function of a protein with a small inhibitory molecule, it can’t be a protein also active in such somatic tissues as brain, heart, liver, and so forth, only in the reproductive cells we want to target." Investigating germ cell molecules for contraception is also desirable because it frequently allows reversibility.

Hecht and colleagues have been proposing this scheme for the last several years, but how does the absence of the MSY2 protein result in male and female infertility? "We don’t know the complete mechanism yet, but it may be preventing the stabilization of specific messenger RNAs that need to be used at specific times as germ cells differentiate into mature sperm and eggs," explains Hecht. "An equally likely possibility is that the absence of MSY2 disrupts the timing of how specific mRNAs are used during germ cell differentiation. As cells become mature sperm, there’s a precise order of synthesis of many essential proteins needed to create functional gametes. We think the absence of the MSY2 protein causes problems in the timing of sperm or egg development. We’re working hard on understanding this mechanism."

A similar human equivalent of MSY2, Contrin, has been identified by the research group and their studies indicate it is also a germ cell-specific protein. Using MSY2 as a mouse model, Hecht and colleagues hope that Contrin can be developed as a new non-hormonal target for human contraception.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>