Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of mice and men’s (and women’s) contraceptives

15.04.2005


Study of unique reproductive-cell protein in mice could lead to new contraceptives for women and men



Mice lacking a special protein found only in germ-line cells results in infertility in both males and females, according to a new study from researchers at the University of Pennsylvania School of Medicine. Norman Hecht, PhD, Professor of Human Reproduction in Penn’s Center for Research in Reproduction and Women’s Health, and colleagues say that these investigations point the way to a new type of contraceptive for both men and women. They report their findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

"Not many proteins are expressed in both male and female germ lines that are specific only to the germ line," says Hecht. Germ line refers to the group of cells that give rise to either sperm or eggs in animals, as opposed to all other cell types, which are called somatic cells. "There are many proteins whose deletion will cause male infertility, and others for creating female infertility, but not many that will lead to both male and female infertility without affecting the somatic cells."


Animals deficient in the protein – called MSY2 – are infertile, but are otherwise healthy and completely normal. Male mice produce no functional sperm, and females show early loss of eggs and defects in ovulation.

The MSY2 protein is part of a family of proteins, called Y-box proteins, that are present in most organisms, ranging from bacteria to humans. In the nuclei of developing germ cells, MSY2 enhances synthesis of a select group of messenger RNA (mRNA) molecules and transports them from the nucleus into the cytoplasm. There, MSY2 proteins stabilize the mRNAs, which are used to make new proteins. Many of these proteins are critical for the production of normal sperm and also are unique to germ cells.

"When trying to develop a new contraceptive, it’s hard because we need to identify a target that’s specific to the germ cells," says Hecht. "Clearly, if we inactivate the function of a protein with a small inhibitory molecule, it can’t be a protein also active in such somatic tissues as brain, heart, liver, and so forth, only in the reproductive cells we want to target." Investigating germ cell molecules for contraception is also desirable because it frequently allows reversibility.

Hecht and colleagues have been proposing this scheme for the last several years, but how does the absence of the MSY2 protein result in male and female infertility? "We don’t know the complete mechanism yet, but it may be preventing the stabilization of specific messenger RNAs that need to be used at specific times as germ cells differentiate into mature sperm and eggs," explains Hecht. "An equally likely possibility is that the absence of MSY2 disrupts the timing of how specific mRNAs are used during germ cell differentiation. As cells become mature sperm, there’s a precise order of synthesis of many essential proteins needed to create functional gametes. We think the absence of the MSY2 protein causes problems in the timing of sperm or egg development. We’re working hard on understanding this mechanism."

A similar human equivalent of MSY2, Contrin, has been identified by the research group and their studies indicate it is also a germ cell-specific protein. Using MSY2 as a mouse model, Hecht and colleagues hope that Contrin can be developed as a new non-hormonal target for human contraception.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>