Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Master Gene Controls Healing Of "Skin" In Fruit Flies And Mammals


University of California, San Diego biologists and their colleagues have discovered that the genetic system controlling the development and repair of insect cuticle—the outer layer of the body surface in insects—also controls these processes in mammalian skin, a finding that could lead to new insights into the healing of wounds and treatment of cancer.

Image shows activation of cuticle repair genes (green) surrounding wound (center) in a fruit fly larva (red)
Credit: Kimberly Mace, UCSF

The UCSD biologists’ study, published April 15 in the journal Science identifies a master gene called grainyhead that activates wound repair genes in the cells surrounding an injury in the cuticle of a fly embryo. These wound repair genes then regenerate the injured patch of cuticle.

In a separate study published in the same issue of Science, a team of researchers led by Stephen Jane at the Royal Melbourne Hospital in Melbourne, Australia report that, although insect cuticle and the outer layer of mammal skin are very different chemically, the grainyhead gene is also essential for normal skin development and wound repair in mice.

“The discovery that grainyhead-like factors are required for the response to injury opens up new avenues of research in the field of wound healing,” said Kimberly Mace, the first author of the UCSD paper. “It also opens new avenues for cancer research, since many cancer cells activate genes normally involved in wound healing in order to kick start processes such as cell division and cell migration.”

Mace, a former graduate student of biology professor William McGinnis, who led the UCSD team, became interested in the healing of insect cuticle when she noticed lesions in the cuticle of certain fruit fly mutants. She suspected that the lesions were scar tissue resulting from the failure of the body surface barrier to develop properly. Confirming her suspicions, the mutant embryos turned out to be much more permeable to a dye than normal embryos.

The group also showed that the genes active in the mutant flies’ lesions were activated in normal flies in cells surrounding a wound created with a sterile needle. The researchers then worked backward, using bioinformatics—computational analysis of DNA sequences—to identify grainyhead as the master gene that initiates the genetic chain reaction that results in cuticle repair. Wounds in mutant flies that lack the grainyhead gene fail to heal.

“The genes involved in cuticle repair are activated very quickly, within 30 minutes after injury,” said Joseph Pearson, a graduate student working under McGinnis and a coauthor of the paper. “They are activated over many cell diameters, most strongly at the boundaries of the wound, suggesting that the grainyhead gene initiates the cuticle repair response after it receives an as-of-yet unidentified signal produced in cells adjacent to the injury.”

In its study, Jane’s team found that, like their fruit fly counterparts, mice lacking grainyhead have a much more permeable skin than normal mice and have deficient wound repair. Both groups point out in their papers that it is interesting that the regulatory mechanisms for development and repair of the surface barrier in insects and mammals have been conserved, given the differences in the molecular composition of insect cuticle and mammal skin.

“The proteins that link together to form the insect cuticle and stratum corneum—the outer layer of mammal skin—are completely different,” says McGinnis. “So it is remarkable that flies and mammals share an ancient conserved pathway to construct and repair the body envelope that protects them from sharp edges and microbes, even though that body envelope is constructed of mostly different molecules.”

In their paper, the UCSD researchers state that studying the wound response pathway in fruit flies, which are easy to manipulate genetically, may provide new insight into wound healing in mammals. For example, Mace points out that very little is known how wound tissue stops its growth behavior when the wound is healed. In addition, cancer cells evade this "stop" program, but how they do it is not well understood.

The study was supported by grants from the National Institutes of Health.

Sherry Seethaler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>