Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catching A Sneak


Weizmann Institute Scientists Reveal the Shape of a Protein That Helps Retroviruses Break into Cells

Retroviruses are among the trickier and more malicious disease agents, causing AIDS and cancers such as leukemia. The viruses manage to sneak into cells with the help of special protein assemblies scattered all over their surfaces. These retrovirus surface proteins cause the membrane envelope of the virus to fuse with the membrane of the cell, spilling virus RNA into the cell to wreak damage. Now, a team of scientists at the Weizmann Institute of Science and the Max Planck Institute for Biochemistry has obtained a close-up 3-D portrait of the large protein complex on the virus that enables its entry into the cell. Their work appeared in the Proceedings of the National Academy of Sciences, USA in March.

These protein complexes recognize and bind to specific sites on the cellular membrane and mediate the fusion process, the first steps in virus infection. However, the shape of this complex on retroviruses and the way that it works had long evaded efforts at detection by various scientific groups. The difficulty is that crystallization, the leading method of preparing proteins for structure solving, does not work well with the elaborate, envelope-bound complexes, which tend to fall apart when they are removed from the virus membrane. Dr. Deborah Fass of the Weizmann Institute’s Structural Biology Department had managed to determine the structures of assorted parts of the complex in the past, but needed a better understanding of how the complex works as a whole.

To accomplish her goal, Fass and student Nathan Zauberman teamed up with scientists from Max Planck’s Molecular Structural Biology Department in Martinsried, Germany to try an alternative method of getting an image of the complex. They turned to the electron microscope, a standard tool for observing larger structures such as cell sections.

Viewing a single, relatively small protein complex was pushing the limits of this technology, but the Max Planck group, expert at developing both the hardware and the software required for visualizing biological structures using electron microscopy, was up to the task. The technique used, known as cryo-electron tomography, involved quick-freezing the viruses in liquid ethane, capturing snapshots of them at various angles and then combining the snapshots to create three-dimensional pictures. From dozens of these digitized 3-D pictures of whole viruses, hundreds of protruding surface protein complexes could be cut out, aligned, and averaged. Though the resulting image did not have quite as high a resolution as those obtained through crystallography, it allowed the scientists to get a complete and fairly detailed picture of this important protein complex in its natural environment. “After years of trying to imagine how the pieces fit together, suddenly we had the real structure right in front of us. Some aspects of it looked familiar, but others were completely unanticipated,” says Fass.

The scientists were surprised to note that the shape of the complexes on the retroviruses bore little resemblance to other known viral envelope protein structures such as those on flu viruses. They also saw strong evidence that the protein complex undergoes a radical change in shape and arrangement of its component parts as it attaches to cells and initiates membrane fusion. Fass was able to see how a smaller protein piece she had previously isolated and analyzed by crystallization fit into the whole, giving her further clues as to how the virus locks onto the cell membrane.

The retrovirus used by Fass and the team is similar to that which causes leukemia in humans. They hope, with further research, to understand the conformational changes the envelope protein complex undergoes as it works, and to find ways to stop those changes from taking place.

Dr. Debora Fass’ research is supported by the Clore Center for Biological Physics; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; and the Leukemia Research Foundation.

Dr. Fass is the incumbent of The Lillian & George Lyttle Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>