Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching A Sneak

14.04.2005


Weizmann Institute Scientists Reveal the Shape of a Protein That Helps Retroviruses Break into Cells



Retroviruses are among the trickier and more malicious disease agents, causing AIDS and cancers such as leukemia. The viruses manage to sneak into cells with the help of special protein assemblies scattered all over their surfaces. These retrovirus surface proteins cause the membrane envelope of the virus to fuse with the membrane of the cell, spilling virus RNA into the cell to wreak damage. Now, a team of scientists at the Weizmann Institute of Science and the Max Planck Institute for Biochemistry has obtained a close-up 3-D portrait of the large protein complex on the virus that enables its entry into the cell. Their work appeared in the Proceedings of the National Academy of Sciences, USA in March.

These protein complexes recognize and bind to specific sites on the cellular membrane and mediate the fusion process, the first steps in virus infection. However, the shape of this complex on retroviruses and the way that it works had long evaded efforts at detection by various scientific groups. The difficulty is that crystallization, the leading method of preparing proteins for structure solving, does not work well with the elaborate, envelope-bound complexes, which tend to fall apart when they are removed from the virus membrane. Dr. Deborah Fass of the Weizmann Institute’s Structural Biology Department had managed to determine the structures of assorted parts of the complex in the past, but needed a better understanding of how the complex works as a whole.


To accomplish her goal, Fass and student Nathan Zauberman teamed up with scientists from Max Planck’s Molecular Structural Biology Department in Martinsried, Germany to try an alternative method of getting an image of the complex. They turned to the electron microscope, a standard tool for observing larger structures such as cell sections.

Viewing a single, relatively small protein complex was pushing the limits of this technology, but the Max Planck group, expert at developing both the hardware and the software required for visualizing biological structures using electron microscopy, was up to the task. The technique used, known as cryo-electron tomography, involved quick-freezing the viruses in liquid ethane, capturing snapshots of them at various angles and then combining the snapshots to create three-dimensional pictures. From dozens of these digitized 3-D pictures of whole viruses, hundreds of protruding surface protein complexes could be cut out, aligned, and averaged. Though the resulting image did not have quite as high a resolution as those obtained through crystallography, it allowed the scientists to get a complete and fairly detailed picture of this important protein complex in its natural environment. “After years of trying to imagine how the pieces fit together, suddenly we had the real structure right in front of us. Some aspects of it looked familiar, but others were completely unanticipated,” says Fass.

The scientists were surprised to note that the shape of the complexes on the retroviruses bore little resemblance to other known viral envelope protein structures such as those on flu viruses. They also saw strong evidence that the protein complex undergoes a radical change in shape and arrangement of its component parts as it attaches to cells and initiates membrane fusion. Fass was able to see how a smaller protein piece she had previously isolated and analyzed by crystallization fit into the whole, giving her further clues as to how the virus locks onto the cell membrane.

The retrovirus used by Fass and the team is similar to that which causes leukemia in humans. They hope, with further research, to understand the conformational changes the envelope protein complex undergoes as it works, and to find ways to stop those changes from taking place.

Dr. Debora Fass’ research is supported by the Clore Center for Biological Physics; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; and the Leukemia Research Foundation.

Dr. Fass is the incumbent of The Lillian & George Lyttle Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>