Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use transcription factors to increase insulin production in diabetic mice

14.04.2005


A group of Japanese scientists has used gene therapy to deliver three insulin transcription factors, MafA, PDX-1, and NeuroD, to the livers of diabetic mice. As a result, the mice experienced an increase in insulin gene expression and insulin production, raising the possibility that this could eventually be used to treat diabetes. The research appears as the "Paper of the Week" in the April 15 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Diabetes, which is marked by high blood-sugar levels, results when the body is unable to produce a sufficient amount of insulin or when it is unable to use insulin properly. There are several ways to restore normal blood sugar levels, including administration of insulin or pancreas and islet transplantation. However, the former involves daily injections and the latter requires life-long immunosuppressive therapy and is limited by tissue supply.

An alternative way to increase the amount of insulin circulating in the body is to enhance insulin gene transcription which in turn results in an increase in the production of insulin. One possible way to do this is by increasing the body’s production of transcription factors, the molecules that are in charge of turning gene transcription on and off.



Dr. Hideaki Kaneto, of the Osaka University Graduate School of Medicine, and his colleagues did just that and over-expressed the insulin transcription factors MafA, PDX-1, and NeuroD in the liver of mice. The researchers did this by inserting the transcription factors into adenovirus and then injecting the adenovirus into the cervical vein of the mice. Each transcription factor was detected only in the liver and not in other tissues after infection with the adenovirus. The result was that the mice had a marked increase in insulin gene expression and therefore insulin production.

The researchers also discovered that overexpression of these three transcription factors in the livers of diabetic mice dramatically ameliorated glucose tolerance in these animals. "Glucose tolerance is a capacity to maintain normal glucose levels in our body," explains Dr. Kaneto. "Under normal conditions, insulin is released from pancreatic beta-cells after glucose load. The released insulin facilitates glucose uptake into peripheral tissues such as muscle and fat and suppresses glucose production in the liver in order to maintain glucose tolerance. In contrast, under diabetic conditions, beta-cell dysfunction and insulin resistance are often observed, which disturbs glucose tolerance."

PDX-1 and NeuroD are transcription factors that are found in the pancreas. They play a crucial role in pancreas development and beta-cell differentiation and also maintain normal beta-cell function by regulating several beta-cell-related genes including insulin. While these two transcription factors contributed to the increase in insulin gene expression, MafA was the most important molecule in this study. The researchers discovered that a combination of only PDX-1 and NeuroD was much less effective at increasing insulin production than all three transcription factors together.

"MafA, a recently isolated transcription factor, is expressed only in pancreatic beta-cells and is very important for insulin gene expression," notes Dr. Kaneto. "In this study, we show that MafA overexpression, together with some other pancreatic factors, markedly increases insulin gene expression in the liver, and dramatically decreases blood glucose levels in diabetic mice. These results suggest a crucial role of MafA as a novel therapeutic target for diabetes."

Although this technique is successful in mice, adenovirus cannot be used to deliver genes into humans. Thus, it will be necessary to modify the vector or to develop some other technique to deliver the transcription factor genes into humans.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>