Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-powered living DNA cannon


We all know that a viral infection can be developed extremely quickly, but in fact it’s even more dramatic than that - the process is literally explosive.

The pressure inside a virus is 40 atmospheres, and it is just waiting for an opportunity to blow up. The virus is like a living DNA cannon. How this cannon functions has been mapped by Dr. Alex Evilevitch at the Department of Biochemistry at Lund University in Sweden. This is knowledge that will have applications in gene therapy, drug development, nanotechnology and the treatment of infections. This involves a new type of virus research that is based more on physics than biochemistry. Perhaps it could be called virus biophysics. Alex Evilevitch took his doctorate at Lund in physical chemistry and worked for a few years at UCLA.

"There I met Professor William Gelbart, who predicted on theoretical grounds that the pressure in a bacteriophage - a virus that attacks bacteria ­ must be 40 atmospheres," explains Alex Evilevitch. "This roughly corresponds to the pressure at a depth of 400 meters under the sea. That’s twenty times more than the pressure in a car tire and ten times more than the pressure in an unopened bottle of champagne. Using measurements, I was able to confirm that Professor Gelbart’s prediction was accurate."

Evelevitch’s research has attracted considerable attention and landed him a prize for the best research of the year in 2003 at UCLA and a 2004 Chancellor’s Award at the same university. The list of recipients of the first prize includes several scientists who went on to win a Nobel Prize. But even though "virus biophysics" is a hot research field in the U.S., Evilevitch chose to return to Europe, where only a few research groups pursue such research.

"It turns out that Lund University has unique equipment for this research," says Alex Evilevitch. "At the National Center for High-Resolution Electron Microscopy there is a helium-cooled electron microscope. The cooling makes it possible to examine sensitive biological material. There are only a few electron microscopes like this in the entire world, and I had the privilege to work with it during the first months it was in regular use in research. Right now I’m busy putting together a research team in virus biophysics."

The virus that infects cells in plants, animals, and humans penetrates in its entirety into the cell and works inside. But bacteriophages are viruses that attack bacteria, working from the outside. The bacteriophage looks lik 20-faceted soccer ball with a tail, or, perhaps rather a syringe needle. It’s only about 60 nanometers in size (one nanometer = a billionth of a millimeter).

But its DNA, its genetic material, is a strand that is about 17,000 nanometers long! To get it into such a small body, everything has to be packed tightly. What’s more, the DNA has a negative electrical charge, which makes the tangled up strands repel each other.

When the bacteriophage comes into contact with a certain type of receptor on the surface of the bacteria cell, a canal in the tail opens and its DNA violently rushes into the cell. Once inside this DNA is reduplicated a million or more times. At the same time new protein shells are constructed for new virus particles. There is a special molecular motor that acts like a screw in its threads, rotating and pressing the DNA into the shell one bit at a time, under rising pressure. It’s the most powerful molecular motor known.

Alex Evilevitch has continued to publish his research findings after his return to Lund. The latest (in Biophysical Journal, January 2005) contains measurements of the length of the DNA strands that are propelled into the bacteria. An important finding in that study is that it is a purely mechanical force, not a chemical or biological process that is at work when the virus DNA explodes.

At the moment Evilevitch is developing methods to influence the mechanical packing force in order to make it possible to squeeze more DNA into the virus capsule.

"One method used today for cloning a gene sequence is to insert it into bacteriophage DNA," says Alex Evilevitch. "After the molecular motor has worked this DNA into the virus capsule, the virus is then allowed to infect a bacteria culture. This in turn will produce millions of copies of the alien DNA. This technique is limited by the fact that there is only room for short sequences in the capsule. If it proves to be possible to influence the force needed to pack DNA, then that will enable even longer DNA strands to be pressed in. That would be a significant technological advance that would benefit future gene therapy, cloning and the general development of molecular biology."

Other ideas circulating in this new scientific field involve the use of bacteriophages as living syringe needles to inject drugs into cells. The protein casing of bacteriophages, which is strong enough to withstand the inner pressure, is also of interest to scientists. In nanotechnology the search is on for suitable packaging for carbon tubes and other nanometer-size structures.

Perhaps protein shells will provide the key to how sturdy containers can be constructed. It is also plausible to use bacteriophages in treating infected wounds, and in the U.S. trials are underway to create safer foodstuffs by controlling bacterial processes with bacteriophages.

Göran Frankel | alfa
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>