Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify protein that controls cancer cells

13.04.2005


Scientists from Wake Forest University School of Medicine have identified a protein that seems to control the malignant features of brain tumor cells, suggesting a new treatment target for anti-cancer drugs. The research is reported in the current issue of Molecular Cancer Research.



"This protein seems to be important in how cells acquire malignant characteristics and how they spread to healthy tissue," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center. "It is very powerful and may be an attractive target for anti-cancer therapy."

The protein is also involved in late-stage breast, skin, colon and thyroid cancers, suggesting that a new treatment could apply to multiple cancers.


Debinski and colleagues identified the protein while studying glioblastomas, the most common form of brain tumor. Glioblastomas are considered the least curable of all human cancers. Like other tumors, glioblastomas require their own blood supply in order to grow and spread. The researchers’ initial goal was to learn what controls this process.

But, when they measured levels of a protein that they thought might be involved, they found only very low levels. Instead, they discovered that a little-known protein – called Fra-1 – is present at large amounts in the tumor cells.

"We were very surprised when we saw it for the first time," said Debinski. "We had to learn more about Fra-1 because it is not a widely-studied biological factor."

What they learned got them interested in doing further research with Fra-1. For example, the protein is able to regulate a set of different genes.

Fra-1 is what is known as a transcription factor. It is one of many proteins that "reads" the genetic material in cells. If effect, transcription factors help control whether the instructions of genes are carried out by the cells.

Debinski and colleagues conducted several experiments to learn more about Fra-1’s role in glioblastomas. They found that it makes the cancer cells more elongated, which might make it easier for them to infiltrate normal tissue. It also enables tumors to grow a blood supply. In addition, when non-tumor forming cells were supplied with Fra-1, they began producing tumors. On the other hand, when Fra-1 was eliminated from cells that were already tumor-producing, they stopped forming tumors.

"It is a powerful biological factor," said Debinski.

In their studies, the researchers found that more than 50 different genes seem to be affected by Fra-1, suggesting that its effects may be even broader than this initial study showed.

"We believe it may be good target for anti-cancer therapy, but we need to explore more," said Debinski.

The researchers suspect that Fra-1 works by partnering with other molecules. If they find that it’s difficult to control the actions of Fra-1 with drug therapy, one of these other molecules might be more susceptible to treatment.

"Even if Fra-1 it not the ideal treatment target, I believe we’re on the right track to identify one," said Debinski.

The research was funded in part by the Brain Tumor Center of Excellence. Debinski’s research associate is Denise M. Gibo with Wake Forest Baptist, who contributed in a major way to the work on Fra-1 in brain tumors.

"She was the first to spot that Fra-1 is elevated in glioblastomas ," said Debinski.

The goal of the Brain Tumor Center of Excellence, which was formed in 2003, is to find better treatments – and one day a cure – for malignant brain tumors. In addition to its focus on research, the center provides a comprehensive program for patient care, and is the first center in the state to offer Gamma Knife stereotactic radiosurgery, a knifeless approach to brain surgery and radiation therapy.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>