Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify protein that controls cancer cells

13.04.2005


Scientists from Wake Forest University School of Medicine have identified a protein that seems to control the malignant features of brain tumor cells, suggesting a new treatment target for anti-cancer drugs. The research is reported in the current issue of Molecular Cancer Research.



"This protein seems to be important in how cells acquire malignant characteristics and how they spread to healthy tissue," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center. "It is very powerful and may be an attractive target for anti-cancer therapy."

The protein is also involved in late-stage breast, skin, colon and thyroid cancers, suggesting that a new treatment could apply to multiple cancers.


Debinski and colleagues identified the protein while studying glioblastomas, the most common form of brain tumor. Glioblastomas are considered the least curable of all human cancers. Like other tumors, glioblastomas require their own blood supply in order to grow and spread. The researchers’ initial goal was to learn what controls this process.

But, when they measured levels of a protein that they thought might be involved, they found only very low levels. Instead, they discovered that a little-known protein – called Fra-1 – is present at large amounts in the tumor cells.

"We were very surprised when we saw it for the first time," said Debinski. "We had to learn more about Fra-1 because it is not a widely-studied biological factor."

What they learned got them interested in doing further research with Fra-1. For example, the protein is able to regulate a set of different genes.

Fra-1 is what is known as a transcription factor. It is one of many proteins that "reads" the genetic material in cells. If effect, transcription factors help control whether the instructions of genes are carried out by the cells.

Debinski and colleagues conducted several experiments to learn more about Fra-1’s role in glioblastomas. They found that it makes the cancer cells more elongated, which might make it easier for them to infiltrate normal tissue. It also enables tumors to grow a blood supply. In addition, when non-tumor forming cells were supplied with Fra-1, they began producing tumors. On the other hand, when Fra-1 was eliminated from cells that were already tumor-producing, they stopped forming tumors.

"It is a powerful biological factor," said Debinski.

In their studies, the researchers found that more than 50 different genes seem to be affected by Fra-1, suggesting that its effects may be even broader than this initial study showed.

"We believe it may be good target for anti-cancer therapy, but we need to explore more," said Debinski.

The researchers suspect that Fra-1 works by partnering with other molecules. If they find that it’s difficult to control the actions of Fra-1 with drug therapy, one of these other molecules might be more susceptible to treatment.

"Even if Fra-1 it not the ideal treatment target, I believe we’re on the right track to identify one," said Debinski.

The research was funded in part by the Brain Tumor Center of Excellence. Debinski’s research associate is Denise M. Gibo with Wake Forest Baptist, who contributed in a major way to the work on Fra-1 in brain tumors.

"She was the first to spot that Fra-1 is elevated in glioblastomas ," said Debinski.

The goal of the Brain Tumor Center of Excellence, which was formed in 2003, is to find better treatments – and one day a cure – for malignant brain tumors. In addition to its focus on research, the center provides a comprehensive program for patient care, and is the first center in the state to offer Gamma Knife stereotactic radiosurgery, a knifeless approach to brain surgery and radiation therapy.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?
26.05.2017 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>