Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular communications breakdown identified in inherited brain disorder

13.04.2005


A breakdown in brain cell communication may contribute to the most common biochemical cause of mental retardation, University of Florida scientists have discovered.



The process is akin to a baseball game gone bad. Imagine if a pitcher were joined by six players simultaneously winding up on the mound. Crouched behind home plate, the single catcher would soon be overwhelmed. Even if the coach sent in teammates to catch the extra balls, confusion would reign on the field.

UF researchers, writing in the journal Brain, identified an analogous situation in the brains of mice with a version of the hereditary disorder phenylketonuria, or PKU: A flood of an amino acid found in nearly all foods bombards certain brain cells, drowning out their ability to communicate properly and potentially interfering with normal brain development.


Scientists have long known that babies born with PKU lack or are deficient in the enzyme that converts the amino acid phenylalanine into a usable form. The amount of the amino acid in the blood builds to toxic levels, ultimately causing severe brain disorders, including mental retardation and seizures. Researchers have been less clear on precisely how that torrent of phenylalanine interferes with brain function.

“Despite tremendous progress in the understanding of the molecular basis of PKU, the mechanisms of how the brain is negatively affected by high levels of phenylalanine has not been known,” said Anatoly Martynyuk, Ph.D., an assistant professor of anesthesiology and neuroscience at UF’s College of Medicine and the McKnight Brain Institute. “This is a new and original approach to explain the cellular mechanisms of brain dysfunction in PKU.”

The findings could someday lead to a treatment for the disease in people and provide insight into other neurological disorders with similar symptoms, Martynyuk said.

Every state screens newborns for PKU. Those with the condition are restricted to an arduous all-liquid diet that eliminates or greatly reduces protein intake, at least through adolescence and possibly throughout their lives. Caught early, brain damage can be avoided and people with the condition can lead normal lives, except for having to adhere to a protein-free liquid diet.

UF researchers discovered that in the brains of mice with PKU, levels of phenylalanine soar to six times higher than levels found in healthy mice. The excess phenylalanine interferes with a key brain cell chemical messenger, glutamate, which plays a crucial role in brain development and function.

The changes in that cellular communication system may at least partially explain the brain disorders associated with PKU, Martynyuk said.

Martynyuk said UF researchers are now examining how the process contributes to seizures in patients with PKU who are not treated with a special diet.

“Based on our findings, we hypothesize that the changes in the brain can be caused not only by higher levels of phenylalanine, but also by withdrawal of phenylalanine,” Martynyuk said. “For example, sequential decreases in phenylalanine levels caused by variations in diet will facilitate glutamate system activity in the brain and can destabilize the entire system. In such conditions, seizures are likely.”

UF researchers said related research suggests phenylalanine and its derivatives might someday be used to treat other brain disorders in which an abnormal glutamate system plays a role, such as stroke and schizophrenia.

Denise Trunk | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>