Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular communications breakdown identified in inherited brain disorder

13.04.2005


A breakdown in brain cell communication may contribute to the most common biochemical cause of mental retardation, University of Florida scientists have discovered.



The process is akin to a baseball game gone bad. Imagine if a pitcher were joined by six players simultaneously winding up on the mound. Crouched behind home plate, the single catcher would soon be overwhelmed. Even if the coach sent in teammates to catch the extra balls, confusion would reign on the field.

UF researchers, writing in the journal Brain, identified an analogous situation in the brains of mice with a version of the hereditary disorder phenylketonuria, or PKU: A flood of an amino acid found in nearly all foods bombards certain brain cells, drowning out their ability to communicate properly and potentially interfering with normal brain development.


Scientists have long known that babies born with PKU lack or are deficient in the enzyme that converts the amino acid phenylalanine into a usable form. The amount of the amino acid in the blood builds to toxic levels, ultimately causing severe brain disorders, including mental retardation and seizures. Researchers have been less clear on precisely how that torrent of phenylalanine interferes with brain function.

“Despite tremendous progress in the understanding of the molecular basis of PKU, the mechanisms of how the brain is negatively affected by high levels of phenylalanine has not been known,” said Anatoly Martynyuk, Ph.D., an assistant professor of anesthesiology and neuroscience at UF’s College of Medicine and the McKnight Brain Institute. “This is a new and original approach to explain the cellular mechanisms of brain dysfunction in PKU.”

The findings could someday lead to a treatment for the disease in people and provide insight into other neurological disorders with similar symptoms, Martynyuk said.

Every state screens newborns for PKU. Those with the condition are restricted to an arduous all-liquid diet that eliminates or greatly reduces protein intake, at least through adolescence and possibly throughout their lives. Caught early, brain damage can be avoided and people with the condition can lead normal lives, except for having to adhere to a protein-free liquid diet.

UF researchers discovered that in the brains of mice with PKU, levels of phenylalanine soar to six times higher than levels found in healthy mice. The excess phenylalanine interferes with a key brain cell chemical messenger, glutamate, which plays a crucial role in brain development and function.

The changes in that cellular communication system may at least partially explain the brain disorders associated with PKU, Martynyuk said.

Martynyuk said UF researchers are now examining how the process contributes to seizures in patients with PKU who are not treated with a special diet.

“Based on our findings, we hypothesize that the changes in the brain can be caused not only by higher levels of phenylalanine, but also by withdrawal of phenylalanine,” Martynyuk said. “For example, sequential decreases in phenylalanine levels caused by variations in diet will facilitate glutamate system activity in the brain and can destabilize the entire system. In such conditions, seizures are likely.”

UF researchers said related research suggests phenylalanine and its derivatives might someday be used to treat other brain disorders in which an abnormal glutamate system plays a role, such as stroke and schizophrenia.

Denise Trunk | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>