Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular communications breakdown identified in inherited brain disorder

13.04.2005


A breakdown in brain cell communication may contribute to the most common biochemical cause of mental retardation, University of Florida scientists have discovered.



The process is akin to a baseball game gone bad. Imagine if a pitcher were joined by six players simultaneously winding up on the mound. Crouched behind home plate, the single catcher would soon be overwhelmed. Even if the coach sent in teammates to catch the extra balls, confusion would reign on the field.

UF researchers, writing in the journal Brain, identified an analogous situation in the brains of mice with a version of the hereditary disorder phenylketonuria, or PKU: A flood of an amino acid found in nearly all foods bombards certain brain cells, drowning out their ability to communicate properly and potentially interfering with normal brain development.


Scientists have long known that babies born with PKU lack or are deficient in the enzyme that converts the amino acid phenylalanine into a usable form. The amount of the amino acid in the blood builds to toxic levels, ultimately causing severe brain disorders, including mental retardation and seizures. Researchers have been less clear on precisely how that torrent of phenylalanine interferes with brain function.

“Despite tremendous progress in the understanding of the molecular basis of PKU, the mechanisms of how the brain is negatively affected by high levels of phenylalanine has not been known,” said Anatoly Martynyuk, Ph.D., an assistant professor of anesthesiology and neuroscience at UF’s College of Medicine and the McKnight Brain Institute. “This is a new and original approach to explain the cellular mechanisms of brain dysfunction in PKU.”

The findings could someday lead to a treatment for the disease in people and provide insight into other neurological disorders with similar symptoms, Martynyuk said.

Every state screens newborns for PKU. Those with the condition are restricted to an arduous all-liquid diet that eliminates or greatly reduces protein intake, at least through adolescence and possibly throughout their lives. Caught early, brain damage can be avoided and people with the condition can lead normal lives, except for having to adhere to a protein-free liquid diet.

UF researchers discovered that in the brains of mice with PKU, levels of phenylalanine soar to six times higher than levels found in healthy mice. The excess phenylalanine interferes with a key brain cell chemical messenger, glutamate, which plays a crucial role in brain development and function.

The changes in that cellular communication system may at least partially explain the brain disorders associated with PKU, Martynyuk said.

Martynyuk said UF researchers are now examining how the process contributes to seizures in patients with PKU who are not treated with a special diet.

“Based on our findings, we hypothesize that the changes in the brain can be caused not only by higher levels of phenylalanine, but also by withdrawal of phenylalanine,” Martynyuk said. “For example, sequential decreases in phenylalanine levels caused by variations in diet will facilitate glutamate system activity in the brain and can destabilize the entire system. In such conditions, seizures are likely.”

UF researchers said related research suggests phenylalanine and its derivatives might someday be used to treat other brain disorders in which an abnormal glutamate system plays a role, such as stroke and schizophrenia.

Denise Trunk | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>