Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse with designer liver has enhanced glucose tolerance and improved insulin response

13.04.2005


Liver-specific knock out mouse has improved liver function



A collaborative effort led by The Burnham Institute’s Gen-Sheng Feng has created a mouse with improved glucose tolerance and insulin activity in the liver, and generated new findings about insulin-signaling in the liver that could prove useful in understanding the pathogenesis of type 2 diabetes. These results, to be published by Nature Medicine in May, were made available to the scientific community by advance posting online at the journal’s website on April 10th.

The liver plays a major role in the uptake of glucose from the bloodstream, its storage, and regulation. Insulin resistance in the liver is a crucial factor in the development of hyperglycemia and hypertriglyceridemia in individuals who suffer type 2-diabetes. Precisely how insulin-initiated signals are modulated in liver cells for glucose uptake and metabolism is unknown.


Gen-Sheng Feng, Ph.D., a Professor in The Burnham Institute’s Signal Transduction Program, has focused his efforts on a recently discovered protein called Gab1. Gab1 has a structure that is similar to other proteins in a family known as Insulin Receptor-Signaling, or IRS, proteins. IRS proteins relay signals initiated by insulin receptors and thus play a critical role in insulin regulation inside cells. Biochemical studies on Gab1 in cell cultures suggested that Gab1 is also involved in insulin signaling, but it is not clear how Gab1 acts to control insulin activity in the liver.

To learn how Gab1 functions in the liver, Feng used a highly advanced genetic engineering technology, called tissue-specific gene deletion, to create a mouse in which the Gab1 gene was deleted, or "knocked out", from the liver, and only the liver. Offsprings were termed "LGKO" for liver-Gab1 knockout mice.

Dr. Feng’s laboratory, in collaboration with Drs. Andrea Hevener and Jerrold Olefsky at the University of California, San Diego, conducted a thorough investigation of the glucose metabolism and insulin activity in this newly-created mouse strain. Interestingly, the LGKO mice had reduced blood glucose levels and lower levels of serum insulin. The mice retained triglycerides in the liver with a commensurate decrease of circulating triglycerides in the bloodstream. Insulin response to glucose load was diminished in LGKO mice, thus glucose tolerance in the liver was significantly improved in the absence of Gabl protein.

The Feng team conducted biochemical analyses on the LGKO mice, homing in on enzymatic pathways critical to insulin response in cells. Upon stimulation with insulin, they found an elevated level of Akt/PkB kinase, an enzyme needed for insulin signaling, and elevated activity of IRS proteins. There was no activation of another enzyme, Erk, which is elevated in normal liver in reaction to insulin stimulation. Dr. Feng concluded that the function of Gab1 in normal liver cells is to promote signaling in the Erk pathway, which reduces insulin response signals flowing through IRS and Akt proteins.

"We propose that Gab1 acts as a negative regulator on insulin signal strength in the liver," said Dr. Feng. "In this work, by making a new liver-specific gene knockout mouse model, we found a novel balancing mechanism for control of liver insulin signaling. Our observation might be instrumental for understanding better the pathogenesis of type II diabetes and designing anti-diabetes drugs."

Co-authors on this study from Dr. Feng’s laboratory were Emilie Bard-Chapeau, Ph.D., and Shinong Long, Ph.D., postdoctoral fellows, and Eric Zhang, graduate student in the Burnham Institute-UCSD’s joint graduate training program in Molecular Pathology.

Jerrold Olefsky, Ph.D. and Andrea Hevener, Ph.D. are Professor and Adjunct Associate Professor, respectively, in the Department of Medicine at the University of Calfornia, San Diego.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>