Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse with designer liver has enhanced glucose tolerance and improved insulin response

13.04.2005


Liver-specific knock out mouse has improved liver function



A collaborative effort led by The Burnham Institute’s Gen-Sheng Feng has created a mouse with improved glucose tolerance and insulin activity in the liver, and generated new findings about insulin-signaling in the liver that could prove useful in understanding the pathogenesis of type 2 diabetes. These results, to be published by Nature Medicine in May, were made available to the scientific community by advance posting online at the journal’s website on April 10th.

The liver plays a major role in the uptake of glucose from the bloodstream, its storage, and regulation. Insulin resistance in the liver is a crucial factor in the development of hyperglycemia and hypertriglyceridemia in individuals who suffer type 2-diabetes. Precisely how insulin-initiated signals are modulated in liver cells for glucose uptake and metabolism is unknown.


Gen-Sheng Feng, Ph.D., a Professor in The Burnham Institute’s Signal Transduction Program, has focused his efforts on a recently discovered protein called Gab1. Gab1 has a structure that is similar to other proteins in a family known as Insulin Receptor-Signaling, or IRS, proteins. IRS proteins relay signals initiated by insulin receptors and thus play a critical role in insulin regulation inside cells. Biochemical studies on Gab1 in cell cultures suggested that Gab1 is also involved in insulin signaling, but it is not clear how Gab1 acts to control insulin activity in the liver.

To learn how Gab1 functions in the liver, Feng used a highly advanced genetic engineering technology, called tissue-specific gene deletion, to create a mouse in which the Gab1 gene was deleted, or "knocked out", from the liver, and only the liver. Offsprings were termed "LGKO" for liver-Gab1 knockout mice.

Dr. Feng’s laboratory, in collaboration with Drs. Andrea Hevener and Jerrold Olefsky at the University of California, San Diego, conducted a thorough investigation of the glucose metabolism and insulin activity in this newly-created mouse strain. Interestingly, the LGKO mice had reduced blood glucose levels and lower levels of serum insulin. The mice retained triglycerides in the liver with a commensurate decrease of circulating triglycerides in the bloodstream. Insulin response to glucose load was diminished in LGKO mice, thus glucose tolerance in the liver was significantly improved in the absence of Gabl protein.

The Feng team conducted biochemical analyses on the LGKO mice, homing in on enzymatic pathways critical to insulin response in cells. Upon stimulation with insulin, they found an elevated level of Akt/PkB kinase, an enzyme needed for insulin signaling, and elevated activity of IRS proteins. There was no activation of another enzyme, Erk, which is elevated in normal liver in reaction to insulin stimulation. Dr. Feng concluded that the function of Gab1 in normal liver cells is to promote signaling in the Erk pathway, which reduces insulin response signals flowing through IRS and Akt proteins.

"We propose that Gab1 acts as a negative regulator on insulin signal strength in the liver," said Dr. Feng. "In this work, by making a new liver-specific gene knockout mouse model, we found a novel balancing mechanism for control of liver insulin signaling. Our observation might be instrumental for understanding better the pathogenesis of type II diabetes and designing anti-diabetes drugs."

Co-authors on this study from Dr. Feng’s laboratory were Emilie Bard-Chapeau, Ph.D., and Shinong Long, Ph.D., postdoctoral fellows, and Eric Zhang, graduate student in the Burnham Institute-UCSD’s joint graduate training program in Molecular Pathology.

Jerrold Olefsky, Ph.D. and Andrea Hevener, Ph.D. are Professor and Adjunct Associate Professor, respectively, in the Department of Medicine at the University of Calfornia, San Diego.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>