Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse with designer liver has enhanced glucose tolerance and improved insulin response

13.04.2005


Liver-specific knock out mouse has improved liver function



A collaborative effort led by The Burnham Institute’s Gen-Sheng Feng has created a mouse with improved glucose tolerance and insulin activity in the liver, and generated new findings about insulin-signaling in the liver that could prove useful in understanding the pathogenesis of type 2 diabetes. These results, to be published by Nature Medicine in May, were made available to the scientific community by advance posting online at the journal’s website on April 10th.

The liver plays a major role in the uptake of glucose from the bloodstream, its storage, and regulation. Insulin resistance in the liver is a crucial factor in the development of hyperglycemia and hypertriglyceridemia in individuals who suffer type 2-diabetes. Precisely how insulin-initiated signals are modulated in liver cells for glucose uptake and metabolism is unknown.


Gen-Sheng Feng, Ph.D., a Professor in The Burnham Institute’s Signal Transduction Program, has focused his efforts on a recently discovered protein called Gab1. Gab1 has a structure that is similar to other proteins in a family known as Insulin Receptor-Signaling, or IRS, proteins. IRS proteins relay signals initiated by insulin receptors and thus play a critical role in insulin regulation inside cells. Biochemical studies on Gab1 in cell cultures suggested that Gab1 is also involved in insulin signaling, but it is not clear how Gab1 acts to control insulin activity in the liver.

To learn how Gab1 functions in the liver, Feng used a highly advanced genetic engineering technology, called tissue-specific gene deletion, to create a mouse in which the Gab1 gene was deleted, or "knocked out", from the liver, and only the liver. Offsprings were termed "LGKO" for liver-Gab1 knockout mice.

Dr. Feng’s laboratory, in collaboration with Drs. Andrea Hevener and Jerrold Olefsky at the University of California, San Diego, conducted a thorough investigation of the glucose metabolism and insulin activity in this newly-created mouse strain. Interestingly, the LGKO mice had reduced blood glucose levels and lower levels of serum insulin. The mice retained triglycerides in the liver with a commensurate decrease of circulating triglycerides in the bloodstream. Insulin response to glucose load was diminished in LGKO mice, thus glucose tolerance in the liver was significantly improved in the absence of Gabl protein.

The Feng team conducted biochemical analyses on the LGKO mice, homing in on enzymatic pathways critical to insulin response in cells. Upon stimulation with insulin, they found an elevated level of Akt/PkB kinase, an enzyme needed for insulin signaling, and elevated activity of IRS proteins. There was no activation of another enzyme, Erk, which is elevated in normal liver in reaction to insulin stimulation. Dr. Feng concluded that the function of Gab1 in normal liver cells is to promote signaling in the Erk pathway, which reduces insulin response signals flowing through IRS and Akt proteins.

"We propose that Gab1 acts as a negative regulator on insulin signal strength in the liver," said Dr. Feng. "In this work, by making a new liver-specific gene knockout mouse model, we found a novel balancing mechanism for control of liver insulin signaling. Our observation might be instrumental for understanding better the pathogenesis of type II diabetes and designing anti-diabetes drugs."

Co-authors on this study from Dr. Feng’s laboratory were Emilie Bard-Chapeau, Ph.D., and Shinong Long, Ph.D., postdoctoral fellows, and Eric Zhang, graduate student in the Burnham Institute-UCSD’s joint graduate training program in Molecular Pathology.

Jerrold Olefsky, Ph.D. and Andrea Hevener, Ph.D. are Professor and Adjunct Associate Professor, respectively, in the Department of Medicine at the University of Calfornia, San Diego.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>