Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing vaccines by computer

13.04.2005


Having vaccines developed by computer may sound unnerving but the increasing role of computer modelling in the development of new vaccines could bring new products onto the market quicker, benefiting patients and saving pharmaceutical companies millions of pounds.



Researchers using informatics and computer modelling can help scientists to uncover and harness the hidden patterns in the wealth of DNA and protein sequences that modern bioscience generates and cut the number of compounds drug companies need to test when searching for new vaccines.

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at the Edward Jenner Institute for Vaccine Research are using a very simple concept to help speed up the development of vaccines. They are studying fragments of ’foreign’ proteins that have been shown by experiments to effectively trigger a response by the immune system. They look for common patterns in their sequences or structures and use the information to create a theoretical model of what is needed for one of these fragments to trigger an immune response. They can then employ computers to search for similar sequences in the thousands of sequences now available. When the search finds something promising it can be experimentally tested to see if it will trigger a response.


Dr Darren Flower, an international leader in this work, said, "A crucial feature of this search strategy is that we don’t have to know what a foreign protein actually does in order to identify it as having fragments that that could make good vaccines. This approach has the potential to significantly reduce the number of proteins that we need to experimentally test to develop new vaccines to protect both humans and economically important livestock."

Professor Nigel Brown, BBSRC Director of Science and Technology, said, "Predictive biology, such as this work, has the potential to bring vaccines and medicines to patients faster, and may also offer the potential to re-model existing vaccines to see whether they can regain their effectiveness against viruses and bacteria that have evolved resistance."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>