Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing vaccines by computer

13.04.2005


Having vaccines developed by computer may sound unnerving but the increasing role of computer modelling in the development of new vaccines could bring new products onto the market quicker, benefiting patients and saving pharmaceutical companies millions of pounds.



Researchers using informatics and computer modelling can help scientists to uncover and harness the hidden patterns in the wealth of DNA and protein sequences that modern bioscience generates and cut the number of compounds drug companies need to test when searching for new vaccines.

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at the Edward Jenner Institute for Vaccine Research are using a very simple concept to help speed up the development of vaccines. They are studying fragments of ’foreign’ proteins that have been shown by experiments to effectively trigger a response by the immune system. They look for common patterns in their sequences or structures and use the information to create a theoretical model of what is needed for one of these fragments to trigger an immune response. They can then employ computers to search for similar sequences in the thousands of sequences now available. When the search finds something promising it can be experimentally tested to see if it will trigger a response.


Dr Darren Flower, an international leader in this work, said, "A crucial feature of this search strategy is that we don’t have to know what a foreign protein actually does in order to identify it as having fragments that that could make good vaccines. This approach has the potential to significantly reduce the number of proteins that we need to experimentally test to develop new vaccines to protect both humans and economically important livestock."

Professor Nigel Brown, BBSRC Director of Science and Technology, said, "Predictive biology, such as this work, has the potential to bring vaccines and medicines to patients faster, and may also offer the potential to re-model existing vaccines to see whether they can regain their effectiveness against viruses and bacteria that have evolved resistance."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>