Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unconventional brain circuits offer clues to insomnia-obesity connection

13.04.2005


NationaUnconventional wiring of the brain circuits that govern sleep and waking might explain the prevalence of insomnia and the condition’s association with obesity, according to new work published in the April issue of Cell Metabolism. Characterized by a chronic inability to fall asleep or remain sleeping, insomnia is estimated to affect one in every eight Americans.



By finding ways to interfere with that unconventional wiring, scientists may advance on new treatments for insomnia, the researchers said. Natural variation in this brain system might also explain differences among people in their susceptibility to sleep disturbances.

The researchers found that so-called hypocretin neurons--having important roles in both arousal and appetite--lack the ability of most neurons to filter "noise" from signal, reported Tamas Horvath and Xiao-Bing Gao of Yale University School of Medicine. The neurons also rapidly reorganize themselves, becoming even more excitable, in response to stresses such as food deprivation, they found.


"The cell bodies of most neurons act as a filter," sorting through a multitude of signals to eliminate noise and generate an appropriate response, Horvath said. "In contrast, it appears that the basic wiring of hypocretin neurons allows noise to become the major signal."

As obesity has reached epidemic proportions, the incidence of insomnia and sleep deprivation has also risen. Studies of this apparent insomnia-obesity association have suggested a causal link between the two, but the underlying mechanism has remained unclear. The new findings of hypocretin neurons offer some possible clues, Horvath said.

Scientists discovered hypocretin neurons while studying narcolepsy, a condition marked by sudden bouts of deep sleep. Narcolepsy generally stems from a shortage or malfunction of hypocretin neurons. The neurons also induce appetite, an important activity for the control of food intake. Yet the integration of the brain cells’ roles in arousal and appetite remains largely unexplored, Horvath said.

In a series of experiments in brain slices and in mice, the researchers examined the organization and stability of inputs to hypocretin cell bodies, which act as filters in other brain cells. They found that hypocretin neurons have an "unorthodox" organization in which excitatory currents exert control on nerve cell bodies with minimal inhibitory inputs to filter them.

Overnight food deprivation promoted the formation of more excitatory inputs. Those new inputs were reversed upon refeeding, they reported, an indication of the extreme plasticity of the hypocretin system to prevailing conditions.

That sensitivity and adaptability makes sense, given the neurons’ role as the body’s natural alarm, rousing one from slumber in response to external cues, Horvath said. However, the structure of the system might also explain the prevalence of sleep disorders and, perhaps, the associated rise in obesity.

"In an evolutionary sense, the response of the hypocretin system to small stimuli would have been necessary for survival," he said. "But in today’s chronically stressful environment, the circuitry may also be an underlying cause of insomnia and associated metabolic disturbances, including obesity."

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>