Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to share models of biological systems

11.04.2005


Today sees the launch of BioModels, the world’s first database of annotated biological models. BioModels is the result of a collaboration led by the European Bioinformatics Institute (UK) and the SBML Team, an international group that develops open-source standards to describe biological systems. Other contributors include the Keck Graduate Institute (USA), the Systems Biology Institute (Japan) and Stellenbosch University (South Africa).



Even the simplest living organisms perform a mind-boggling array of different processes, which are interconnected in complex ways to ensure that the organism responds appropriately to its environment. One of the best ways of ensuring that we really understand how these processes fit together is to build computer models of them. If a computer model behaves differently than the real organism, we know that we’ve neglected an important component of the system. Quantitative models can also reveal previously unappreciated properties of complex systems, paving the way towards new drug treatments. This approach, known as ’computational systems biology,’ is becoming increasingly popular now that scientists are accumulating detailed parts lists for many organisms, thanks to genome sequencing projects and other efforts to comprehensively document the components of living entities.

"Until now, computer modellers had no defined way of exchanging descriptions of biological systems, and there was no accepted place to deposit and share new models when they were developed," explains the EBI’s Nicolas Le Novère. "The BioModels database aims to address these issues."


The first step was to develop a standard way of describing such models. The Systems Biology Markup Language (SBML), an open-source computer language developed by the SBML Team, is now widely accepted and is supported by over 75 different software systems worldwide. This allows computational systems biologists to write models using the tool of their choice, and then to share them so that others can build on their work.

Michael Hucka of the California Institute of Technology continues: "The next logical step was to build a community resource that would allow anyone to submit, download and reuse the models. That’s the purpose of the BioModels database. BioModels provides access to published, peer-reviewed, quantitative models of biochemical and cell-biological systems."

Some of these systems are very simple, containing just a few processes or reactions; others contain hundreds. The models are checked to verify that they correspond to the reference publication. Human curators annotate and cross-link components of the models to other relevant data resources. This allows users to identify precisely the components of models, and helps them to retrieve appropriate models, which they can then visualize and build upon using any SBML-compatible software.

"Ultimately," says Le Novère, "we hope that publishers will encourage any author who plans to publish a new model to submit it to the BioModels database; this will ensure that all the models in the public domain are freely available for everyone to make the most of them."

Trista Dawson | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>